脉冲星
脉冲星,就是旋转的中子星。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星会发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,就把它命名为脉冲星。
中文名:脉冲星
外文名:Pulsar
拼音:maichongxing
实质:旋转的中子星
发现时间:1967年
名称由来:不断地发出电磁脉冲信号
1、定义
脉冲星(Pulsar),又称波霎,是中子星的一种,为会周期性发射脉冲信号的星体,直径大多为10千米左右,自转极快。
人们最早认为恒星是永远不变的。而大多数恒星的变化过程是如此的漫长,人们也根本觉察不到。然而,并不是所有的恒星都那么平静。后来人们发现,有些恒星也很“调皮”,变化多端。于是,就给那些喜欢变化的恒星起了个专门的名字,叫“变星”。
脉冲星发射的射电脉冲的周期性非常有规律。一开始,人们对此很困惑,甚至曾想到这可能是外星人在向我们发电报联系。据说,第一颗脉冲星就曾被叫做“小绿人一号”。
经过几位天文学家一年的努力,终于证实,脉冲星就是正在快速自转的中子星。而且,正是由于它的快速自转而发出射电脉冲。蟹状星云脉冲星的X射线/可见光波段合成图像。
正如地球有磁场一样,恒星也有磁场;也正如地球在自转一样,恒星也都在自转着;还跟地球一样,恒星的磁场方向不一定跟自转轴在同一直线上。这样,每当恒星自转一周,它的磁场就会在空间划一个圆,而且可能扫过地球一次。
那么岂不是所有恒星都能发脉冲了?其实不然,要发出像脉冲星那样的射电信号,需要很强的磁场。而只有体积越小、质量越大的恒星,它的磁场才越强。而中子星正是这样高密度的恒星。
另一方面,当恒星体积越大、质量越大,它的自转周期就越短。我们很熟悉的地球自转一周要二十四小时。而脉冲星的自转周期竟然小到0.0014秒!要达到这个速度,连白矮星都不行。这同样说明,只有高速旋转的中子星,才可能扮演脉冲星的角色。
2、简介
据中国空间技术研究院脉冲星导航卫星科学任务系统总设计师帅平研究员介绍,恒星的一生也像人一样,经历从孕育诞生,到成长成熟,以及最终衰老死亡的整个过程。大体上说来,恒星死亡后的遗骸可以分为三类:白矮星、中子星和黑洞。
“脉冲星就是高速自转的中子星,具有极其稳定的周期性,其稳定度比目前最稳定的氢原子钟还要高1万倍以上,被誉为自然界中最稳定的天文时钟,使之成为人类在宇宙中航行的灯塔。”帅平说。
脉冲星的典型半径仅有10公里,其质量却在1.44倍至3.2倍太阳质量之间,是除黑洞外密度最大的天体。每立方厘米的脉冲星质量达到1亿吨,要用1000艘百万吨级的巨轮才能拖动。
脉冲星的自转轴与磁极轴之间有一个夹角,两个磁极各有一个辐射波束。当星体自转且磁极波束扫过安装在地面或航天器上的探测设备时,探测设备就能够接收到一个脉冲信号。脉冲星具有良好的周期稳定性,其稳定度达到10的负19次方。
“10的负19次方是什么概念呢?就是两个脉冲信号点之间的周期差值,只有在小数点后面第19位才会出现变化。”帅平解释说,目前国际时间基准是原子时系统,最好的氢原子钟的稳定度只能达到10的负15次方水平,比脉冲星时钟的稳定度还要低4个量级。
“这就好像把原来的时间尺子刻度加密到1/10000,刻度更细密了,我们就能量得更精确、看得更细致。”帅平说。
3、特性
脉冲星发射射电脉冲
这个结论引起了巨大的轰动。因为虽然早在30年代,中子星就作为假说而被提了出来,但是一直没有得到证实,人们也不曾观测到中子星的存在。而且因为理论预言的中子星密度大得超出了人们的想象,在当时,人们还普遍对这个假说抱怀疑的态度。
直到脉冲星被发现后,经过计算,它的脉冲强度和频率只有像中子星那样体积小、密度大、质量大的星体才能达到。这样,中子星才真正由假说成为事实。这真是上世纪天文学上的一件大事。因此,脉冲星的发现,被称为二十世纪六十年代的四大天文学重要发现之一。
脉冲星是20世纪60年代天文的四大发现之一。至今,脉冲星已被我们找到了不少于1620多颗,并且已得知它们就是高速自转着的中子星。
脉冲星有个奇异的特性——短而稳定的脉冲周期。所谓脉冲就是像人的脉搏一样,一下一下出现短促的无线电讯号,如贝尔发现的第一颗脉冲星,每两脉冲间隔时间是1.337秒,其他脉冲还有短到0.0014秒(编号为PSR-J1748-2446)的,最长的也不过11.765735秒(编号为PSR-J1841-0456)。那么,这样有规则的脉冲究竟是怎样产生的呢?
天文学家已经探测、研究得出结论,脉冲的形成是由于脉冲星的高速自转。那为什么自转能形成脉冲呢?原理就像我们乘坐轮船在海里航行,看到过的灯塔一样。设想一座灯塔总是亮着且在不停地有规则运动,灯塔每转一圈,由它窗口射出的灯光就射到我们的船上一次。不断旋转,在我们看来,灯塔的光就连续地一明一灭。脉冲星也是一样,当它每自转一周,我们就接收到一次它辐射的电磁波,于是就形成一断一续的脉冲。脉冲这种现象,也就叫“灯塔效应”。脉冲的周期其实就是脉冲星的自转周期。
然而灯塔的光只能从窗口射出来,是不是说脉冲星也只能从某个“窗口”射出来呢?正是这样,脉冲星就是中子星,而中子星与其他星体(如太阳)发光不一样,太阳表面到处发亮,中子星则只有两个相对着的小区域才能辐射出来,其他地方辐射是跑不出来的。即是说中子星表面只有两个亮斑,别处都是暗的。这是什么原因呢?原来,中子星本身存在着极大的磁场,强磁场把辐射封闭起来,使中子星辐射只能沿着磁轴方向,从两个磁极区出来,这两磁极区就是中子星的“窗口”。
中子星的辐射从两个“窗口”出来后,在空中传播,形成两个圆锥形的辐射束。若地球刚好在这束辐射的方向上,我们就能接收到辐射,且每转一圈,这束辐射就扫过地球一次,也就形成我们接收到的有规则的脉冲信号。
灯塔模型是现在最为流行的脉冲星模型。另一种磁场震荡模型还没有被普遍接受。
脉冲星是高速自转的中子星,但并不是所有的中子星都是脉冲星。因为当中子星的辐射束不扫过地球时,我们就接收不到脉冲信号,此时中子星就不表现为脉冲星了。
脉冲星的一般符号是PSR。例如,第一个脉冲星就记为PSR1919+21。1919表示这个脉冲星的赤经是19小时19分;+21表示脉冲星的赤纬是北纬21度。
双脉冲星PSRJ0737-3039A/B的发现,让人们欣喜若狂。它是由两个脉冲星形成的双星系统。能够发现双脉冲星系统,确实是非常幸运的事情。对PSRJ0737-3039A进行计算以后,科学家预言它的脉冲轮廓形状会发生较快的演化,甚至预言在2020年左右,它的光束会由于轴线进动而从我们的视线中消失,但是,仔细的观测结果显示,预期的脉冲轮廓形状根本就没有发生变化,这对科学家的打击可是不小。预言的失败让我们感到,脉冲星的灯塔模型似乎存在着问题。
4、脉冲原因
尽管还没有十分有力的证据,但是全世界的脉冲星专家都相信,脉冲星并非或明或暗地闪烁发光,而是发射出恒定的能量流。只是这一能量就像手电筒的光线那样汇聚成一束非常窄的光束,从星体的磁极发射出来。中子星的磁轴与旋转轴之间成一定角度(这与地球的磁北极地理北极位置略有不同一样)。星体旋转时,这一光束就象灯塔的光束或救护车警灯一样,扫过太空。只有当此光束直接照射到地球时,我们才能用某些望远镜探测到脉冲星的信号。这样一来,恒流的光束就变成了脉冲光。
几乎所有的专家都相信上述这种灯塔模型。但是也有“离经叛道”的不同意见被提了出来。新的观点认为脉冲星的发光不是源自它的磁极,而是来自它的周围。同时认为,脉冲星发出脉冲光是因为它的磁场在高速地翻转振荡,激变的磁场造成星体周围出现了极高的感生电场。这个感生电场的峰值出现在磁场过零点附近,并且加速带电粒子使其发出同步辐射。这就可以解释脉冲信号的产生机理。
磁场振荡模型的优点在于有太阳这个低频振荡的样板。我们知道,太阳磁场的方向每过11年就会翻转一次,如果太阳塌缩成了中子星,它的自转周期可以缩短到秒级甚至毫秒级,同时,它的磁场翻转周期也可能达到毫秒级。电磁振荡模型遇到的问题在于如下疑问:星体的磁场真的能那么快地翻转吗?当然,灯塔模型也有它的问题:磁铁高速旋转的时候,真的能从磁极发光吗?
脉冲信号的辐射,曾经被认为是中子星的极端磁场的特有行为。但是后来人们发现,在某些主序星上,比如超冷星TVLM513-46546和化学特殊星CUVirginis,都发现了非常相似的脉冲辐射,而这些星体的磁场都很低(数千高斯)。这对磁场震荡模型是有利的。因为磁场震荡模型降低了对磁场强度的要求。
绝大多数的脉冲星可以在射电波段被观测到。少数的脉冲星也能在可见光、X射线甚至γ射线波段内被观测到,例如著名的蟹状脉冲星就可以在射电到γ射线的各个波段内被观测到。
5、发现
1967年10月,剑桥大学卡文迪许实验室的安东尼·休伊什教授的研究生——24岁的乔丝琳·贝尔检测射电望远镜收到的信号时无意中发现了一些有规律的脉冲信号,它们的周期十分稳定,为1.337秒。起初她以为这是外星人“小绿人(LGM)”发来的信号,但在接下来不到半年的时间里,又陆陆续续发现了数个这样的脉冲信号。后来人们确认这是一类新的天体,并把它命名为脉冲星(Pulsar,又称波霎)。脉冲星与类星体、宇宙微波背景辐射、星际有机分子一道,并称为20世纪60年代天文学“四大发现”。安东尼·休伊什教授本人也因脉冲星的发现而荣获1974年的诺贝尔物理学奖,尽管人们对贝尔小姐未能获奖而颇有微词。
1997年拍摄的美国电影《超时空接触》(Contact)中女主角破译了来自外太空的有规律的信号,并据此制成了特殊的机器。但第一次确定乘坐机器与外星智慧联系的人选时,却没有选她。这段情节被认为是影射了贝尔小姐没有获得诺贝尔奖的事情。
6、命名规则
脉冲星的命名由脉冲星英文pulsar的缩写PSR加上其赤经赤纬坐标组成。如PSRB1937+21,1937是指该脉冲星位于赤经1937,+21是指其位于赤纬+21°,B意味着赤经赤纬值是归算到历元1950年的值。此外,J则表示赤经赤纬值是归算到历元2000年的值。
7、脉冲双星
脉冲星拥有行星的发现虽然看起来显得意外,在这方面还有更加意外的发现,那就是脉冲双星。
赫尔斯是个研究生,他被当作泰勒的助手派往波多黎各的阿雷西博,用大射电望远镜观测脉冲星,那是当时最好的射电望远镜,也许正是使用了这个望远镜的原因,他发现了一种奇怪的电波,这个时候距离第一颗脉冲星的发现仅仅过了七年,人们对脉冲星的了解还很肤浅,当时赫尔斯还不能立刻确信他所看到的周期变化就是事实,经过反复观测后,他才确定该系统是双体。他把这个消息电告泰勒,泰勒立刻赶往阿雷西博,他们进一步研究后认为这是一个脉冲双星,并且一起确定了双星的周期和两颗天体之间的距离。
于是,第一颗脉冲双星就是这样被发现了,这个发现在1993年被授予诺贝尔奖,这样有关脉冲星的发现就有了两项诺贝尔奖。
8、双脉冲星
2003年12月,Nature上的一篇研究报告宣布发现了脉冲星PSRJ0737-3039,与看起来像是一颗中子星的恒星成对出现。一个月后,当来自澳大利亚Parkes天文望远镜的数据被重新分析时,研究人员发现该中子星实际上也是另一颗脉冲星。所以这是第一个被发现的双脉冲星体系,名称是PSRJ0737-3039A/B。
脉冲双星与双脉冲星
脉冲双星与双脉冲星是有区别的。在脉冲双星系统中,一个脉冲星与另外一个非脉冲星(可以是中子星、白矮星、甚至是普通的主序星)相伴。在双脉冲星系统中,必须是两个脉冲星相伴。已经发现的脉冲双星系统已经有120个,而发现的双脉冲星系统只有一个PSRJ0737-3039A/B。
9、毫秒脉冲星的发现
1982年9月的一个午夜,希纳·库卡尼(ShriKulkarni)并没有意识到自己此时正在经历的是什么,他正在波多黎各岛上的阿雷西博天文台,利用这里巨大的射电天线开展脉冲星的搜寻工作:这是大质量恒星死亡之后留下的一种拥有极高密度,高速旋转的残骸。
在此之前,库卡尼刚刚发现了自己的第一颗脉冲星,这颗脉冲星的自转速度极快——大约每1.5毫秒就自转一周,这在当时比任何已知的天体自转还要快上大约20倍。
这一年,库卡尼还只是一名研究生,在他的脑海里,这样高速的自转除了有些令人惊讶之外并没有其他特别的意义。他想,这只是一颗自转有些快的脉冲星而已。他打电话给自己的项目导师,已故的加州大学伯克利分校著名天文学家唐·贝克(DonBacker)并报告了相关情况。多年之后,他回忆起当时通话时的情景:“那是一段漫长的沉默。”或许是因为贝克教授意识到了这条消息背后的重大意义。
很快,贝克教授提醒库卡尼他眼前的这项发现所隐含的意义:这是一个正以每秒641圈的速度高速旋转的天体。今天的库卡尼已经是美国加州理工学院的一名天文学家,他说:“当时有很多人认为在这样的高速旋转下,脉冲星应该会分崩离析。”
脉冲星很小,直径一般和一座小型城市相当(大约20公里左右),而当时的一般观点认为,如果它的自转达到这样的高速,那么强大的离心力将会把它自己撕成碎片。
但此次库卡尼的发现用事实打破了这种预言。这项发现将不仅改变库卡尼的职业生涯,也将彻底改变整个脉冲星科学研究领域。这颗脉冲星编号为PSRB1937+21,它成为了一类最新划出的类型——毫秒脉冲星中的第一颗成员。
这种脉冲星不仅自转速度快的惊人,它们还有一项引人注目的特征,那就是它们自转的周期性非常精确,甚至几乎可以说是宇宙中最精确的时钟!正是借助了这些宇宙时钟,天文学家们才得以解答有关恒星,物质,甚至是时空本身的许多问题。
即便是最普通的脉冲星也非常不可思议。它们是宇宙中密度最高的天体之一,它们是质量约为太阳8~20倍之间的大质量恒星爆发衰亡之后留下的遗骸。当这样的大型恒星耗尽它最后的燃料并逐渐走向死亡之时,将会以超新星的方式发生猛烈爆发,在此过程中将其外层气体壳完全剥离。
爆发过后残留下来的就是一个密度极高的内核,由于压力太过巨大,这个内核物质中的电子已经被挤压而与原子核中的质子相结合形成中子,这就是所谓中子星。中子星的密度十分惊人,其相当于将1.2~2倍太阳的质量挤压进一个直径约20公里的球体内。仅仅大约一汤匙的中子星物质,其质量就将超过1万亿公斤,这几乎相当于地球上所有人类体重的总和。
这样惊人的密度意味着在中子星的表面,引力将会十分强大——比地球表面的引力场高出大约1000亿倍。如果你要站在一颗中子星的表面,你将会立刻被压扁成薄薄的一层“物质层”,其厚度仅有一层原子那么厚,平铺在中子星的地表上。当然前提还得是你不怕热,因为中子星表面的温度大约是100万摄氏度左右。事实上,中子星表面的超强重力环境不允许任何高度超过几厘米的地表凸起存在,这也让中子星表面成为宇宙中最光滑的天体表面之一。
另外还有中子星的磁场,它们的磁场同样是宇宙中最为强大的。即便是磁场最弱的中子星,其强度也比地球磁场高出大约1亿倍——这样的强度几乎可以破坏原子结构。在中子星的两极,强大的磁场加速带电粒子,如正电子和电子,并以束流的方式向太空当中高速喷射出去。这样的喷流会在射电波段形成信号源,并最终被地球上的射电望远镜所接收到。
当然,也正是这样的喷流让这种天体得到了脉冲星的名称。当一颗中子星高速旋转时,它两端的两束喷流就像宇宙中的灯塔信号一样,扫过太空。从地球看去,它就像一盏时明时暗,极具周期性的脉冲信号,其中有些甚至可以慢到10秒一次。
但尽管存在自转周期比较长的脉冲星,它们在一开始的自转速度都是非常快的。这种高速度是从其作为大质量恒星内核开始就继承下来的。随着恒星燃料逐渐耗尽,其再也无法维持自身的稳定,恒星的核心在自身巨大引力的作用下发生剧烈塌缩。
就像滑冰运动员在收起双臂时旋转速度会加快一样,随着自身直径的剧烈收缩,恒星内核的旋转速度急剧加快。当恒星最终衰亡只剩下作为残骸存在的中子星时,这颗中子星的自转速度可以超过每秒100次。随着时间推移,缠绕的磁场逐渐丢失能量,中子星的自转速度也就随之逐渐放慢下来。
但为何库卡尼所发现的那颗中子星的自转速度会如此之快?在经过认真分析之后,天文学家们意识到,要想要达到这样惊人的自转速度,这颗中子星必定需要得到近旁的另一颗伴星的帮助。随着这颗伴星逐渐耗尽其燃料,它会发生膨胀,就像所有其他恒星同样会经历的那样——此时它的外层大气会在引力作用下流向脉冲星,并在其周围形成高速旋转的吸积盘结构,就像水池里的水排出时在落水口形成的漩涡那样。这种旋转的吸积盘将会加速脉冲星的旋转速度。
毫秒脉冲星的发现让脉冲星研究领域重新焕发出生机。自从1967年英国女科学家乔林斯·贝尔发现第一颗脉冲星以来,这一领域已经变得死气沉沉。该领域的一项里程碑式发现出现在1974年,当时罗素·哈尔斯(RussellHulse)和约瑟夫·泰勒(JosephTaylor)发现了一对正在相互绕转并逐渐彼此接近的脉冲星。在这一过程中,这两颗脉冲星的能量必定正在不断以引力波的形式发生散失,引力波是时空中的涟漪。
这两人进行的测量时迄今人类所获得有关引力波存在的最清晰证据,从而证明了爱因斯坦在其广义相对论中所作出的预言。1993年,由于在这方面做出的开创性工作,这两位物理学家被授予诺贝尔奖。库卡尼表示:“那是这个领域的巅峰时期。但在那之后,这个领域仅剩下的唯一可做的事情似乎就是发现更多的脉冲星而已了。到了1982年,有一种感觉就是,似乎关于脉冲星的一切都已经被搞清楚了。”
直到库卡尼发现首颗毫秒脉冲星,这种死气沉沉的局面才终于被打破。自那以后,天文学家们又找到了大约300颗属于这一类别的脉冲星。他们认为仅在银河系中就有超过2万颗毫秒脉冲星,另外还有数量大致相同的常规脉冲星——听上去似乎数量不少,但相比银河系内动辄数以千亿计的恒星数量,这类神秘天体的数量实际上是极其稀少的。库卡尼发现的脉冲星PSRB1937+21一直保持着自转速度最快天体的记录直到2006年。就在这一年,与当年发现首颗毫秒脉冲星时的库卡尼一样还是研究生身份的杰森·赫塞尔斯(JasonHessels)发现了一颗编号为Terzan5ad的脉冲星,这是一颗非常暗弱的脉冲星,但其自转速度高达每秒716圈。
在这样的高速和巨大的质量下,毫秒脉冲星将具备巨大的角动量,因此它们的自转速度将很难慢下来。这就让它们在漫长的时间里能够一直保持近乎不变的自转周期。当毫秒脉冲星最早被发现时,它们的自转周期精度几乎可以与地球上最精确的原子钟相媲美。目前在荷兰阿姆斯特丹大学担任教职的赫塞尔斯表示,时至今日,最新一代的原子钟的计时精度已经超过了脉冲星,但如果放在更长的时间尺度下,比如数十年的时间里去比较,那么毫秒脉冲星的计时精度仍然可以达到与最新的原子钟不相上下的地步。
即便经过数十亿年之后,毫秒脉冲星的自转周期也只会延长几个毫秒而已,但由于天文学家们能够精确测定其减速速率,因此他们就可以扣除减速效应的影响并继续将它们用作精确的计时工具。
毫秒脉冲星的自转周期精度极高,天文学家们目前对其进行的测量精度已经达到了10亿亿分之一的量级(10的18次方分之一)。他们对于脉冲星的信号抵达地球的时间预报精度已经达到100纳秒(1纳秒等于10亿分之一秒)的水平。由于这样的信号极其精确,因此任何最细微的变化都能够揭示在脉冲星周围以及信号在太空中传播过程中所发生的事件。
在太空中弥漫分布着稀疏的尘埃与气体物质,它们被称作星际介质,这些物质会阻挡和发散来自脉冲星的信号。通过对脉冲星信号的衰减,强度以及发散程度进行测量,天文学家们能够了解星际介质的性质,而后者在恒星与星系形成以及演化方面都扮演着关键角色。
在脉冲星周围是帮助它加速自转的伴星。科学家们想要了解这颗伴星有多大,它是如何随着时间推移而发生演化的。比如变化的磁场将如何影响其外形以及轨道性质。对于这些,脉冲星信号的延迟,调幅以及其他性质的变化都在向天文学家们透露着这颗伴星的诸多性质以及它与脉冲星之间的互动状态。
得益于对脉冲星极高精度的测定,天文学家们现在可以察觉脉冲信号中哪怕最细微的变化以及它背后的引力作用。在1992年,天文学家们在一颗毫秒脉冲星的周围发现了一个行星系统,这是人类发现的第一个太阳系外行星系统。来自行星的引力影响造成脉冲星发生轻微晃动,从而对其抵达地球的脉冲信号产生极细微的影响。以库卡尼发现的毫秒脉冲星PSRB1937+21为例,近期对其脉冲信号的精密分析同样显示这颗脉冲星周围可能存在一些小型天体,其大小可能与小行星的大小接近。
通过对这类信号在射电波段,有时候甚至是在X射线乃至γ射线波段的观测非常重要,因为这是天文学家们了解和研究奇异的脉冲星系统唯一的的途径。同时这也是研究脉冲星独特组成与机构状况的唯一途径。
从本质上说,脉冲星基本就是一颗巨大的原子核。一般认为它们可能拥有一层薄薄的大气层,厚度不超过10厘米。其中的主要成分则是氦,氢和碳,而其最外侧的“地壳”的主要成分则是铁。而如果你继续向其内部进发,那里的物质密度将变得更高,是几乎完全由中子组成的奇异物质。当然,这些都只是理论模型得到的结论,根本不可能登陆或钻进一颗脉冲星开展实地考察。
然而毫秒脉冲星可以为我们提供线索。它们发出的脉冲信号让天文学家们可以精确测定它们的轨道并据此定出它们的质量,而这一数据是理论学家们限定并提出新模型和假想理论的基础。在整个宇宙中,除了这里你找不到其他具备如此高的密度和压力环境的地方。对于物理学家们而言,脉冲星就是开展极端条件物理实验的天然实验室,甚至可能在这里找到全新的物质形态。
赫塞尔斯说:“这简直是一个奇迹:在宇宙中竟会存在这样的天体,能够让我们去涉足物理学中一些原本根本无法触及的领域。”
10、检验爱因斯坦的理论
这样的领域就包括引力本身。爱因斯坦的广义相对论将引力描述为时空的扭曲,并且在那之后,这一理论预测已经经受住了一次又一次的实践检验。然而在脉冲星附近的超高密度物质以及超强引力场环境下,广义相对论是否仍然有效?要知道唯一能够在密度和引力强度上超越中子星的就只剩下黑洞了。而要想找出这个问题的答案,研究人员就必须对来自脉冲星的信号进行分析。
近期,赫塞尔斯所在的一个研究组发现了一个位于三星系统内的毫秒脉冲星。这个系统中除了这颗脉冲星之外,另外两个成员都是白矮星——同样是恒星爆发衰亡之后的遗骸,与中子星之间的差异就在于形成白矮星的恒星质量不如形成中子星的恒星质量那么大。这种奇异的组合提供了检验广义相对论的一个绝佳机会:等效原理。
等效原理是爱因斯坦广义相对论中的一项核心原则,其可以简单地表述为:引力对于任何人和任何事物都是等效的。或许其中最有名的案例便是1971年美国宇航员戴夫·斯科特(DaveScott)在月面上利用一把锤子和羽毛进行的一项*落体实验。实验的结果当然是这两者同时落到月面上,从而证明了月球引力作用对于这两个物体产生的作用是相同的。与之相似的,研究人员想要了解在这一特殊的三星系统内,其中一颗白矮星对脉冲星施加的引力作用是否与另外一颗白矮星对脉冲星施加的引力作用是相同的。目前这项研究工作还尚未开始进行,但他们表示一旦开展,这将是迄今对于等效原理最为精确的一次检验。
当然,到目前为止还没有任何实验结果表明爱因斯坦的理论是错误的。对于相对论最为有力的一项证明来自哈尔斯和泰勒两人发现的脉冲星双星系统,他们的观测进行时人们还尚未发现毫秒脉冲星,但那项观测证实了引力波的真实存在。不过哈尔斯和泰勒所做的那项观测仍然是间接的,他们只是通过对这两颗脉冲星轨道参数的测量,并进而推断出引力波的存在。时至今日,对引力波的直接探测仍然尚未成功。
不过,科学家们正在努力开展这方面的尝试,如在地面上建设了“极光干涉引力波观测台”(LIGO),其设计目标是直接检测宇宙中由于中子星或黑洞相撞时可能产生的引力波信号。这一设施的第一阶段运行在2002年至2010年间进行,但结果是一无所获。但经过大规模升级之后,该设施即将在今年秋季开始第二阶段运行。
与此同时,一个国际合作的引力波探测项目也正在进行,他们将要借助的有力工具正是毫秒脉冲星。哈尔斯参与了这一项目,是该项目欧洲小组的成员,他表示:“基本的想法是将这些毫秒脉冲星充当星系级GPS系统”。当宇宙深处的引力波扫过地球时,地球将会发生轻微晃动,就像是漂浮在水面上的浮标随波上下起伏一样。这样的波动将会影响到脉冲星信号抵达地球的时间。
在过去的几年间,天文学家们一直在致力于升级他们的设备,不断提升对十几颗最佳“太空时钟”的计时精度测定值。他们希望这项研究将很快就能有所发现。因格里德·斯特尔斯(IngridStairs)任职于加拿大不列颠哥伦比亚大学,是该国际项目北美小组的成员。他表示:“在未来5年左右的时间内,我们有足够的理由预期将可以借助这种方法探测到引力波信号。”
不过,斯特尔斯认为LIGO项目有可能在这方面领先于他们。但反过来说,LIGO的设计目标是探测数倍于太阳质量的中子星或黑洞相互合并时产生的引力波信号,而脉冲星方案所要探测的目标则是超大质量黑洞,即质量相当于太阳数百万乃至数十亿倍的超级黑洞之间相互碰撞时产生的引力波信号。因此,斯特尔斯指出:“这两个项目所针对的并非相同的探测目标,因此即便最终LIGO计划真的在我们之前探测到引力波信号,这也并不意味着我们的工作就失去了意义。”
但不管在这场引力波探测的竞赛中最终究竟是哪一方取胜,通过以上这些案例已经充分证明了毫秒脉冲星是我们理解一系列宇宙现象的有力工具。库卡尼表示:“它是大自然给与我们的馈赠。它是一座位于天宇之中,精密的物理学实验室。”人类在大约30多年前收到了这份大自然的礼物,即便在当时这个礼物似乎并不显得起眼,但对于现在的我们来说,这无疑是一份珍贵的厚礼。
11、研究意义
由于脉冲星是在蹋缩的超新星的残骸中发现的,它们有助于我们了解星体蹋缩时发生了什么情况。还可通过对它们的研究揭示宇宙诞生和演变的奥秘。而且,随着时间的推移,脉冲星的行为方式也会发生多种多样的变化。
每颗脉冲星的周期并非恒定如一。我们能探测到的是中子星的旋转能(电磁辐射的来源)。每当脉冲星发射电磁辐射后,它就会失去一部分旋转能,且转速下降。通过月复一月,年复一年地测量它们的旋转周期,我们可以精确地推断出它们的转速降低了多少、在演变过程中能量损失了多少,甚至还能够推断出在因转速太低而无法发光之前,它们还能生存多长时间。
事实还证明,每颗脉冲星都有与众不同之处。有些亮度极高;有些会发生星震,顷刻间使转速陡增;有些在双星轨道上有伴星;还有数十颗脉冲星转速奇快(高达每秒钟一千次)。每次新发现都会带来一些新的、珍奇的资料,科学家可以利用这些资料帮助我们了解宇宙。
12、中国研究现状
脉冲星试验卫星
2016年11月10日7时42分,我国在酒泉卫星发射中心用长征十一号运载火箭,成功发射了脉冲星试验卫星。该星主要用于验证脉冲星探测器性能指标和空间环境适应性,积累在轨试验数据,为脉冲星探测*验证奠定技术基础。脉冲星被称作宇宙中的灯塔,它们特征明显、易于辨识,在宇宙中的定位位置比较精准。
脉冲星试验卫星属于太阳同步轨道卫星,卫星入轨后,将开展在轨技术试验,验证星载脉冲星探测器性能指标和空间环境适应性,积累在轨实测脉冲星数据,为脉冲星探测及技术*验证奠定技术基础。
中国第一次用自己望远镜找到新脉冲星
2017年10月10日,中国科学院国家天文台发布消息,宣布科学家们使用位于贵州的FAST望远镜找到了2颗新的脉冲星。
发布会上提到,其实已经发现6颗,不过由于发布会是几周前开始准备的,所以只发布了2颗。
这是中国人第一次使用自己的望远镜找到新的脉冲星。
虽然,人们早就知道FAST这么大的望远镜肯定能够找到不少脉冲星,但第一次找到,还是令很多人感到兴奋的。
上一篇:阴囊红疙瘩痒是怎么回事
下一篇:戴森球