欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是:首页  > 教育教学

点兵场上的神算术

科普小知识2022-06-05 05:39:39
...

小学数学的故事:部队秩序领域中的神圣算术

韩信是汉初特等奖获得者,擅长带兵。传说有一天,在一个部门的陪同下,他检阅了士兵们的操练。当所有士兵排成三列时,韩信问道:“最后一排还剩多少人?”外交部将报告:“两个人留在队伍的最后。”当队伍排成五车道纵队时,韩信问道:“最后一排还有多少人?”回答:“还有3个人。”最后,韩信又下达了组建一个七车道纵队的命令,得知队伍的最后还有两个人。

阵法已毕,韩问曰:“今日有多少兵来?”该部将回答,“今天应该有2345人在战场上。”韩信想了一会儿,说道,“不!球场上只有2333名球员,比你说的少了12名。”外交部半信半疑,下令重新清点队伍。结果是2333人,其中一人还不错,并吃了一惊。当国防部问韩信他是如何得到确切数字的,韩信笑着说,“我是根据你刚才报告的其余信息计算出来的。”

以上是著名的“韩信点兵”故事。这个故事的情节无疑是后人杜撰的,但军事领域的神圣算术包含着深刻的科学真理。它起源于中国古代书籍《孙子舒静》,一本公元二世纪的计算书。

《孙子兵法》中有一个问题:有一个数,余数是二除以三,余数是三除以五,余数是二除以七。现在,这个数字是多少?在几千年的漫长历史中,由于趣味与难度的结合,产生了许多神秘的名字,如“鬼谷心算”、“神奇妙算”、“简易管理技术”、“秦王密兵”、“大秋艳一书”。除了最后一个,这些不能被检查的名字与问题本身完全无关。

《孙子兵法》在这个问题上给出了以下答案:5和7相乘,然后乘以2得到70,余数除以3得到1;将3和7相乘得到21,将余数除以5得到1。将3和5相乘得到15,将余数除以7得到1。然后将余数2和70除以3得到140;将余数3和21除以5得到63;用7除得到的余数2和15,得到30。把上面的140,63,30加起来就是233。因为3×5×7=105,233减去两次105得到23。当它除以3,5,7时,余数不会改变。因此,23是“一无所知”问题的最简单的答案。

上述算法可归纳为两个等式:

70×2+21×3+15×2=233

233-105×2=23

公元1593年,明代数学家程大伟在他的著作《算法的统一》中把《孙子兵法》中的方法总结为一首美妙的诗:

“三人用七十枝名贵,五枝梅花二十一枝;

七个孩子的团聚花了半个月的时间,除了105个孩子,其他人都知道了。"