欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是:首页  > 科技

NB-LTE与NB-CIoT谁更能讨得5G的欢心?

科普小知识2023-09-30 16:29:12
...

现今无线通讯发展飞快,全球无线通讯,发展得如火如荼,人们对于行动通讯、影音传输或终端应用的需求日与俱增,所到之处网路无所不在,因此即便4G还在持续扩展布建时,5G的时代也宣告即将到来,当中所含的商机更是无限。

为了迎接这庞大的通讯蓝海,各国无不积极地要抢先一步占得先机,纷纷投入许多资源及研究,对于下一代5G通讯进行规划和开发,想掌握其中的关键技术及专利,以提高被第三代合作伙伴计划(3rd GeneraTIon Partnership Project, 3GPP)标准采纳的机会,俾助国内通讯相关产业未来的发展。

5G通讯性能大耀进

在产业发展迅速的情况下,用户端的各样应用也随之增加,在面对全球用户对于数据传输与网路容量需求越来越高的状况下,5G网路便因应而生,3GPP的5G相关的标准技术预计将在2016定案,在2020年预估相关产品将可步入商用阶段。在其未来发展,不仅需要大的传输速率,并且还要比现今大以数倍的连结数,全球将走入万物皆联网的时代(图1)。

NB-LTE与NB-CIoT谁更能讨得5G的欢心?

图1 5G发展趋势

知名咨询机构麦肯锡指出,2025年物联网(IoT)的应用产值将达到11.1兆美元,5G提出低延迟、高传输、低耗能、大连结等特性,5G行动通讯预计在2020年全球将有500亿个终端产品具备上网功能,整体系统容量(Capacity)需求也较4G增加1000倍以上,并且其传输延迟必须小于1毫秒(ms),因此下一代5G通讯的效能提升及技术挑战势必比先前更加严峻。

随着智慧电表、智慧家电、智慧工厂、可穿载设备这些应用型终端的大量出现,越来越多的工作和生活都须要透过智慧终端来解决,对此,高密度的连结及降低终端成本需求变得越来越大,必要有新的技术来因应这样的需求。

5G关键技术剖析

在5G未来发展,不仅需要大的传输速率,并且还要比现今大以数倍的连结数,全球将走入万物皆联网的时代,在3GPP首先提出机器对机器(M2M)/机器类型通讯( Machine Type CommunicaTIon, MTC),其设计的目标主要有更低的设备成本、更低的功耗、更大的覆盖率和支援大量的设备连线,但外界多数认为这只是一个过渡阶段的版本,因为其功耗和建置成本还是过高,对于需要更低功耗及更大量的连结数的应用来说,其还是不够为一可使用的技术,因此3GPP在R13提出一种更低传输资料量,更低的设备成本、更广覆盖率的技术,称做NB-IoT(Narrowband-Internet of Thing),其最大的传输资料量为200kbit/s,频宽也降至200kHz,并且其覆盖率可在提升数倍,因此各主流电信营运商无不极力支持此技术(表1)。

NB-LTE与NB-CIoT谁更能讨得5G的欢心?

NB-IoT抢进物联网蓝海

物联网已发展多年,各式的应用及技术都相继被提出,如LoRa和SIGFOX,也都强调低功耗以及广大覆盖率的需求,但由于LoRa及SIGFOX使用非授权频谱,因此代表不管任何人皆可使用此频段,也形成许多不可控制的干扰问题,这变成在使用上非常不可靠,因此全球各大电信营运商倾向支持3GPP所提出之NB-IoT的技术,由于其使用授权频段,并且可以在原本的蜂巢式网路设备上快速部署NB-IoT的建置,对营运商而言便可以节省布建成本及快速整合原有长程演进计画(LTE)网路,因此可以预见未来NB -IoT将为全球主流电信商所推行的方向。

NB-IoT为一低功耗广域网路(Low Power Wide Area,LPWA)的技术,其特点便是极低的功耗和广大的覆盖率及庞大的连结数,其装置覆盖范围可以提升20dB,并且电池寿命可以超过10年以上,每个NB-IoT载波最多可支援二十万个连结,而且根据容量需求,可以透过增加更多载波来扩大规模,使单一基地台便能支援数百万个物联网连结。

在NB-IoT的设计上有几项目标,一为提升涵盖率,可以藉由降低编码率(Coding Rate)来提升讯号的可靠性,进而使讯号强度微弱时,依旧能够正确解调,达到提高覆盖率的目的,另外为要大幅提升电池使用周期,其发送的能量最大为23dBm,约为200毫瓦(mW),还有为降低终端的复杂度,因此其调变上使用恒定包络(Constant Envelope)的方式,可以使功率放大器(Power Amplifier, PA)运作于饱和区间,让传送端有更好的使用效率,在实体层设计上,也可以简化部分元件,使复杂度降低,还有为减少系统频宽,其频宽设计在200kHz,因为在物联网上不需要这么高的传输速率,所以便不需要这么大的频谱,在使用上也能够更弹性地分配,而还有一个重要设计目标就是要大幅的提升系统容量,使得大量的终端能够同时连结,其中一种方法为可以使子载波区间更小,使得在频谱资源分配上能够更加的弹性,切出更多子载波分配给更多的终端。

NB-IoT在频谱上有三种布建方式,第一种为单独布建(Standalone),此种布建方式为使用独立或全球行动通讯系统(GSM)的频谱,彼此不会互相干扰,是最单纯的布建方式,但需要一段自己的频谱。第二种是使用保护频段(Guard Band)来布建,利用LTE频谱边缘保护频段,讯号强度较弱的部分布建,优点是不需要一段自己的频谱,缺点是可能发生与LTE系统干扰问题。

而第三种是在现行运作频段内布建(In Band),部署情境如图2所示,在使用的频谱则选择在低频段上,像是700MHz、800MHz、900MHz等,因为在低频段能有更广的覆盖率,并且有较好的传波特性,对于室内环境可以有更深的渗透率。

NB-LTE与NB-CIoT谁更能讨得5G的欢心?

图2 NB-IoT三种部署情境图片来源:NB-IoT enabling new business opportuniTIes, 华为

然而,目前3GPP所提出之NB-IoT也包含各项不同的技术,目前主要可分为两个方向,一为由诺基亚(Nokia)、爱利信(Ericsson)和英特尔(Intel)等阵营支持的NB -LTE(Narrowband-LTE)以及华为和Vodafone支持的NB-CIoT(Narrowband-Cellular IoT),两种技术对于营运商最大的差别在于其可以在现有的LTE环境中,有多少可以重新使用于物联网的应用中。

在NB-LTE几乎可与目前现行的LTE设备相容,但NB-CIoT可说是一个重新设计的技术,须要建构新的晶片,但在其涵盖率可望更加地提升,设备成本也更为降低,因此两个技术可说各有千秋,下面将对两个技术做一概述。

NB-LTE向后兼容降成本

在NB-LTE使用的频宽为200KHz,在下行使用的是正交分频多工存取(Orthogonal Frequency Division MulTIple Access,OFDMA)的技术,子载波频宽为15kHz,而在正交频分多工(OFDM)符元(Symbol)以及时隙(Time Slot)和子讯框(Subframe)的区间,与原有的LTE规范相同。

NB-IoT上行使用的是单载波分频多重存取(Single-carrier Frequency-Division Multiple Access, SC-FDMA),子载波频宽为2.5kHz,是原本LTE子载波频宽的六分之一,而在符元以及时隙和子封包的区间为原有LTE的六倍。NB-LTE最主要希望能够使用旧有的LTE实体层部分,并且有相当大的程度能够使用上层的LTE网路,使得营运商在布建时能够减少设备升级的成本,在建置上也能够沿用原有的蜂巢网路架构,达到快速布建的目的。

以下行部分来看,在同步讯号(PSS/SSS)、实体广播通道(PBCH)及实体下行控制通道(PDCCH)等须要去做调整或重新设计,并且在原来一些控制通道,如实体控制格式指示通道(PCFICH)和实体混合自动重传请求指示通道(PHICH),则省略去给资料做传送。而在NB-LTE中,为了将频宽缩减至200kHz,为原本LTE最小频宽1.4MHz的六分之一,因此将传送的时间周期拉长,所以在NB-LTE定义一种新的时间单位,称作M-subframe,其为原有LTE系统连续六个Subframe所构成,因此其时间长度为6毫秒,而六个M-subframe构成一个M-frame(图3),在一个M-subframe,最小的调度单位为一个实体层无线资源区块(Physical Resource Block,PRB),代表一个M-subframe中最多能够支援六个终端。

NB-LTE与NB-CIoT谁更能讨得5G的欢心?

图3 NB-LTE下行封包设计图片来源:3GPP TR 45.820

在上行部分,使用的是SC-FDMA,终端能够弹性的使用各个单载波资源,在NB-IoT的应用上,接收端必须要能够容忍非常弱的讯号,而且时间延迟可能会很大,由于每个终端要与基地台做时间的对齐,其时间的误差要小于循环字首(Cyclic Prefix,CP),所以在CP的设计上必须要更加地拉长,因此在子载波频宽的设计上为原来的六分之一,到2.5kHz,这么做也可以使终端设备在频谱上做更弹性的配置。

NB-CIoT新设计大应用

在NB-CIoT中,下行使用的是OFDMA,与以往的LTE系统不同,NB-CIoT使用四十八个频宽为3.75 kHz的子载波,并使用六十四点的快速傅立叶转换(FFT),其取样频率240kHz,也与旧有的LTE系统不同。在时间单位上,NB-CIoT一个封包由八个子封包组成,而在每个子封包可在分为三十二个时隙,每个时隙又分为十七个符元(图4)。

NB-LTE与NB-CIoT谁更能讨得5G的欢心?

图4 NB-CIoT下行封包设计图片来源:3GPP TR 45.820

其在各个讯号通道也重新设计,如同步讯号(PSS/SSS),虽也像LTE系统使用固定振幅(Constant Amplitude)的ZC序列(Zadoff-Chu Sequence),但其会复制两次传送,为的是增加侦测的可靠度,而在实体下行分享通道(PDSCH)原本使用涡轮码(Turbo Coding)的编码,也改为适合小资料传输的卷积编码(Convolution Coding),可更加简化系统架构及复杂度,提高系统应对物联网需求的能力。

在上行部分,采用的是分频多重存取(Frequency Division Multiple Access,FDMA)系统,与OFDM系统相比,每个子载波间不需要正交,因此并不需要精确的时间及频率校准,而在频率使用上,NB-CIoT使用三十六个5kHz频宽的子载波,而其支援GMSK(Gaussian-shaped Minimum Shift Keying)的调变,GMSK为恒定包络的调变并且有PSK(Phase Shift Keying)的特性,可提供较高的频谱效益,并且可以使PA运作在饱和区间,得到更有效率的表现。

可以发现在NB-CIoT在整体设计上和以往LTE系统有非常大的不同,不仅在封包时间的架构上,在各个使用的通道也重新设计,因此对于营运商来说,必须要重新设计晶片模组,对于成本及建置的速度上便是一大需要顾及的地方。

NB-LTE与NB-CIoT各有千秋

NB-LTE与NB-CIoT各项技术的比较如表2所示,在NB-LTE中,大部分与原有LTE系统相同,如使用的接取技术和FFT与取样频率的大小等,但NB -CIoT,却是截然不同的设计规格。

NB-LTE与NB-CIoT谁更能讨得5G的欢心?

对于营运商来说,NB-LTE能够与旧有的系统直接套用,无须耗费太大的成本,并且能够快速度布建在原有的蜂巢式网路基站中,而NB-CIoT中,不论在封包设计、取样频率或子载波频宽大小上,都与原本LTE不同,但正由于其是专为物联网所重新设计的规格,因此它在各样应用于物联网的特性上,会比NB- LTE更加地适合,如在取样频率上,NB-LTE依旧是1.92MHz,这在设备的成本上依旧会是一大考量,而NB-CIoT的取样频率就降至240kHz,便可以大幅降低设备成本以及耗电量。

NB-CIoT的CP也较NB-LTE更加地长,便更能够抵抗时间的延迟,使传输距离可以更远,所以NB-LTE与NB-CIoT都各有不同的优势与劣势,因此最后定案的技术与运作模式可能要等到3GPP所订出之标准规范后才能明朗化。

最终的NB-IoT的版本可能是这两个版本中选择一个,或是两个技术尽量融合成一个版本,但有几项技术原则必须要存在,包括:NB-IoT要同时支援Standalone、Guard Band及In Band的三种布建方式;使用180kHz的频宽;在下行链路使用OFDMA的系统;在上链使用GMSK或SC-FDMA系统;在L2以上的技术与通信规范,要尽量与原有LTE系统重用。

NB-IoT势在必行

在未来进入万物联网的时代,各种后端应用相继产生,因此要如何使这些应用彻底地实现,以及营运商要如何在这当中分得其中一块大饼,NB-IoT无疑是一个必要推行的技术,由于如SIGFOX或LoRa,其使用免授权频段,对于资料可靠性和安全性是一大考量,重要的是营运商如何在其中获取利益也是须要考量的部分,而NB-IoT由既有的LTE网路架构,再更新其部分设备元件,便能够快速地打入物联网市场,对于未来一日千里的通讯发展及需求,建置及部署的速度无疑是非常关键的考量,并且其使用的是授权频段,对于资料的安全性及可靠度便大大的提升,且可以减少许多不必要的干扰问题,在今年(2016)的年中预计会定出一版NB-IoT的标准规范,届时便能够看见将来的窄频物联网的发展。