欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是:首页  > 科普文章

地震监测

科普小知识2021-09-26 15:02:45
...

地震监测是指在地震发生前后,对地震前兆异常和地震活动的监视、测量。目前地震监测主要有几种划分方法,一种是专业与群众之分,指专业的地震台站和一些群测点,前者主要用监测仪器,如水位仪、地震仪、电磁波测量仪等,用来监测地震微观前兆信息;后者则主要靠浅水井、水温、动植物活动异常等手段,来观察地震前的宏观异常现象。

1、系统的网络结构

固定流动

用于长期监测某一特定地区的地震活动情况,由若干个建立在固定地点的地震台和一个负责业务管理和资料处理职能的部门组成的地震台网称为固定台网。

为了地震学和地震预报研究的需要,或在某处发生强震后,为监视震区及邻区的余震活动情况,临时架设了由若干个地震台和一个资料处理中心的地震台网。一旦已取得一批有用的记录或余震活动已趋于平静就将台网撤离.这类台网称为流动台网。

地震台网

用于监测全球地震活动性的地震台网,其尺度几乎跨越全球。典型的是美国在60年代初建立的世界标准地震台网(WWSSN)。该台网由100余个分布在全球的地震台和设在美国本土的业务管理部门组成。

在我国早已建成由24个基准地震台组成的*地震台网,其尺度跨越全国。用于监测全国的基本地震活动情况。

为了监测省内及邻省交界地区的地震活动性,我国绝大多数省份均已建成由十余个至数十个地震台组成的区域地震台网。跨度一般约为数百千米。

有些省内的地区或一些大型的工矿企业,如大型水电站,为了监测本地区的地震活动性,建成由几个或十余个地震台组成的地方地震台网,跨度一般约在十余千米至几十千米间。

处理中心

上述的全球的、国家的、区域的和地方的地震台网,在业务上对地震台作统一管理,处理地震台产出的地震数据和资料,其结果将远比单台处理的精度高。因此这些台网都有一个起组网作用的管理和数据处理中心。该机构的主要职能是:对各台进行业务指导、设备维修、技术管理;汇总、分析和处理各台邮寄来的数据和资料;定期或不定期出版、发行和交换处理后的地震目录、地震观测报告和各种印刷物,供地震学家们研究使用。例如,国家地震局地球物理所九室就是一个对全国基准地震台起组网作用的机构。在各省地震局或地方地震部门内也均设有类似职能的部门作组网工作。

遥测台网

近20余年来,随着地震学和地震预报研究以及大震后快速响应等工作的进一步开展,对地震观测工作提出了愈来愈高的要求。上述的那些由单台组成的台网,在某些方面已有所不足,故在许多国家中,使用近代多项高新技术的成果建立了许多不同尺度的遥测地震台网。这类台网将分散的各地震台上地震信号,使用各种数据传输方法实时传输至记录处理中心。计算机组成的数据系统作快速的集中处理,并以电信号的形式存储所有的地震信号和处理结果,供日后在处理用。因仅须传输地震信号,故地震台可做到无人值守。这就为地震台址的最佳选定提供了很大的方便。计算机系统快速集中处理实时传输来的地震信号,可迅速获得满意的处理结果。为在短时期内掌握大地震前的前震活动情况、快速进行大地震各项参数的速报、快速决策抗震救灾工作、余震监测、震后趋势判断和强余震预报等工作提供了基本数据和资料。我国自1966年邢台地震后,近30年来,已在全国建立了六个区域遥测地震台网和十余个地方遥测地震台网。为我国的地震观测、地震学和地震预报的研究作出了贡献。

遥网联网

一些已建成的遥测台网,因尺度不大,对发生在网边的地震,处理结果有时不十分理想。为此将在地域上靠近的多个遥测台网用各种数据传输手段联网,相互交换地震信号或处理结果就可将发生在某台网网边的地震变成联网后组成的大台网内的地震。可在很大程度上提高地震参数的测定精度。目前我国已建成将北京、天津、大同、太原、临汾、邯郸、郑州、呼和浩特和嘉祥等九个遥测台网联网组成一个华北地震台网联网。其跨度约有1000余千米。在西南,将成都和昆明及西昌遥测台网,用租用电话线路及无线电相互交换传输各自六个地震信号的方式联网,建成了跨越约为2000千米的川滇遥测地震台网联网。

地震台阵

在世纪50年代末60年代初,一些研究用地震方法侦察和爆炸的国家,在地震观测中参用了当时地震勘探中已使用多年的测线法。建立了一些地震台阵来提高远震的检测和定位能力。

早期地震台阵中的地震计是按规则几何图形在空间布设的。当各点的干扰不相关的情况下,把每个地震计输出的地震信号延时组合后,其输出信号的信噪比可比单台输出的高。假如有N个地震计,则组合后输出信号的信噪比比单台输出可提高N1/2倍。在利用地震计在空间分布的坐标位置,可测定出地震波到来的方向即方位角,而后用走时曲线的慢度定出震中距。美国在小型试验台阵运转后所得到结果的基础上于60年代在本土上蒙大拿州建立了一个由500余个架在浅井内的地震计组成的大孔径地震台阵Lasa台阵。运转多年后取得了大量的观测资料,发表了许多有价值的文章和资料。但由于不能完全达到设计时的预期效果,而且常维护该台阵的费用却相当巨大,因此在70年代后期,该台阵就开始缩小规模直至最后停止运转。

随着观测研究工作的深入发展,指出只要在地质构造均匀地区,不按规则几何图形布设的地震计输出的远震信号,在初动到达后一小段时间内其形态是大体相同时,这就为用台阵数据处理方法处理普通台网的输出信号提供了基础。瑞典地震学家巴特利用现成的瑞典地震台网(其尺度比美国的大孔径地震台阵约大10倍)的信号延时组合后,使输出信号的信噪比比单台信号提高了二倍。从而改善了远震P波到时读数的准确度,比较可靠地对P波初动方向识别,震源方向的测定精度也有所提高。

2、方法手段

地震前兆是与地震孕育和发生相关联的异常现象。由于地震的孕育和发生是很复杂的自然现象,因此在这个过程中将出现地球物理学、地质学、大地测量学、地球化学乃至生物学、气象学等多学科领域中的各种异常现象。

经过系统的清理和研究,自1966年邢台地震以来,我国已在70多次中强以上地震前记录到1000多条前兆异常。这些异常可归为十大类,即地震学、地壳形变、重力地磁、地电、水文地球化学、地下流体(水、汽、气、油)动态、应力应变、气象异常以及宏观前兆现象。每一类前兆又包含多种监测手段和异常分析项目。如地壳形变包含有大面积水准测量、断层位移测量、海平面观测、湖面观测、地面倾斜观测等手段。地震学前兆分析项目是各大类前兆中最丰富的,包括地震活动分布的条带、空区集中、地震频度、能量、应变、b值、震群、前震、地震波速、波形、应力降等三十多种异常分析项目。宏观异常项目亦是丰富多彩,如地声、地光、光球、喷水、喷油、喷气、地气味、地气雾,井水翻花、冒泡、突升、突降、变色、变味、井孔变形、各种动物行为的反常现象等等。

总之,由于地震孕育和发生的复杂性,决定了地震前兆具有丰富,多样和综合的特点。归纳起来,前兆现象可分为十大类,其中包含异常分析项目和观测手段可达近百项。

3、观测研究

国内外多次大震发生前,均在震中及其邻区发现过大量与电磁波有关的异常现象。1966年邢台地震后,我国即开始了地震电磁波异常现象的研究;1976年唐山地震后,更是有组织地开展了系统观测和研究。80年代,我国已有10个省、自治区、直辖市开展了震前电磁波的观测与研究。电磁波观测仪资料分析在这方面,已经或将要进行的研究课题十分广泛,有的已取得一定成果。例如,对震前电磁波异常进行了分类,指出存在两种不同起因的电磁波异常。一类是在孕育过程中,由震源体产生的某种电磁辐射,称之为辐射异常;另一类是由于震源体及其邻区介质物理性质的变化,导致该区电磁波传播特性的变化引起的电磁波异常,称之为传播异常。前者可能发生在孕育直到发震的整个过程中,压电效应、动电效应、热电效应等均能导致岩石在微破裂时产生电荷的积累与释放,从而使震源区辐射出频谱很宽的电磁波。

4、监测能力

我国地震监测预报工作由建国初期的科学行为,逐步向科学化、规范化、现代化、数字化和自动化方向发展。30年前国家地震局成立初期,我国的地震监测能力还很有限,到1966年邢台地震时,我国仅有24个测震台组成全国地震基本台网,8个地磁台组成全国地磁基本台网。30年后的今天,中国地震局在全国建立了415个专业地震台站、20余个包含近300个站(点)的遥测地震台网、560余个地方、企业观测站(点),1200余部短波、超短波电台组成的地震数据信息通信网络。按观测类别分,专业台站(点)中:测震有近600个站(点)800套仪器,强震观测台(点)240个,形变有160个站(点)297套仪器,电磁有近150余个站(点)280余套仪器,地下流体有近110个站(点)200套仪器;地方、企业台站(点)中:测震有近220个站(点)250余套仪器,形变有60余个站(点)65套仪器,电磁有120余个站(点)125套仪器,地下流体有300余个站(点)313套仪器。

直到70年代末,我国的地震监测能力在部分重点危险区基本达到监测6级以上地震的能力。目前我国地震监测台网具有监测ML≥2.5级地震能力的面积占国土面积的1/2略强,1/4左右的面积具有监测ML≥3.0级地震的能力,另有近1/4的面积(青藏高原大部分地区)具有监测ML≥4.0-5.0级以上震级地震的能力。全国的监控能力可达ML≥4.0级地震,东部重要省会城市及其附近具有监测ML≥1.5-2.0级地震的能力,首都圈地区具有监测ML≥1.0-1.5级地震的能力。

5、监测体系

我国地震监测预报、震灾防治和紧急救援三大工作体系已经建立,并实现了地震观测技术由模拟向数字化的换代,使地震检测预报能力和水平跃上新台阶。如今,全国采用数字化仪器观测到的数据,实时或准实时传到北京,有效地监视着地下构造活动。这对处于两大板块运动交界处、多地震的我国,社会经济意义尤为重大。10月11日,中国地质学会副理事长、中国地震局何永年研究员介绍了我国地震科学领域“九五”以来取得的成果。

我国的地震监测技术系统始建于20世纪60至70年代,经过多年的连续运转,观测技术系统老化、落后现象严重。“九五”期间,地震监测技术系统改造完成、数字化地震台网和大震预报系统建成。地震观测技术系统实现了由模拟向数字化的根本转变。中国数字地震观测技术系统建成后,国家地震台网和省级地震台网中近一半的台站、地震前兆台网中近三分之一的测项实现了数字化改造。目前,我国大陆已有由49个数字化地震台组成的国家地震台网和26个区域数字台网在运行。改变了过去观测资料精度低、信息不丰富、传递速度慢、时效性差的状况。

首都圈地震频繁,历史上地震灾害严重,因此,首都圈被列为地震监测预报重点加强地区,设立了首都圈地震应急专项和“首都圈防震减灾示范区系统工程建设”项目,在北京、天津、河北北部的15万平方公里内,新建改造了107个宽频带、大动态数字地震观测台,布设了120个强震观测台,改造了数字前兆台,建设了数据中心和台网中心,有效地增强了首都圈地区的地震监测预报能力、应急指挥能力和地震科普宣传教育能力。

中国地壳运动观测网络(GPS)作为第一批国家立项的“九五”国家大型科学工程,是跨行业、多部门联合执行项目。由中国地震局、国家测绘局和中国科学院三方共同承担。该网络是一个综合性、多用途、开放型、数据资源共享、全国统一的观测网络。具有连续动态监测功能。25个基准站(24小时观测和传输数据)、数百个基本站(定期观测和传输数据)和上千个流动站(需要时观测和传输数据)重点分布在我国大陆重要活动带上,构成网络的基本框架,以高精度和高稳定性的观测技术获取*大范围和时空密集的地壳运动观测数据,为大地震的预报提供关键性依据,并将成为地球动力学研究的实验基地,尤其对青藏高原的隆起成因研究起到决定性作用。同时网络所取得的各种基本信息及附带产品将为我国交通、*、保险等部门提供服务。该工程的建立,使我国在卫星定位技术应用学科领域、网络观测系统、数据处理分析系统达到了国际先进水平。为了使我国的地震预报探索具有更坚实的科学基础,《大陆强震机理及预测》被列入国家重点基础研究规划项目(“937”),目前正在顺利进展中。该项目以活动块体动力学为主要科学思想深入研究,探讨我国大陆地震孕育规律的认识,特别是对强震地点的预测具有重要的科学意义。

6、监测事例

2014年11月22日16时55分,四川省甘孜藏族自治州康定县境内发生6.3级地震,震源深度18公里。我国立即启动应急响应机制,紧急安排多颗我国陆地观测卫星对地震灾区进行连续多次监测。

截至2014年11月24日,已通过卫星数据应急共享通道提供地震灾区震前和震后卫星影像共计16景。其中,震前影像10景,分别是高分一号影像4景、资源三号影像2景、资源一号02C星影像2景,实践九号A星影像2景;震后影像6景,分别是资源一号02C影像2景、高分一号影像4景。目前,这些数据已第一时间分发给中国地震局、民政部国家减灾中心、国土资源部以及四川省当地相关部门。未来一段时间,服务地震灾害的监测卫星将持续对灾区进行观测,并及时向相关部门提供所获取的数据。

上一篇:地震应急预案

下一篇:中国地质灾害