欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是:首页  > 科普文章

脱氧核糖核酸

科普小知识2021-10-03 15:02:54
...

脱氧核糖核酸(英语:Deoxyribonucleicacid,缩写为DNA)又称去氧核糖核酸,是一种分子,可组成遗传指令,以引导生物发育与生命机能运作。主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。带有遗传讯息的DN******段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。1953年4月25日,DNA双螺旋形结构提出。

中文名:脱氧核糖核酸

外文名:Deoxyribonucleicacid

简称:DNA

分子结构:双螺旋结构

与基因的关系:基因是有效遗传的DNA片段

复制方式:半保留复制

1、物质结构

DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP脱氧鸟苷)。而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。

多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。在细胞内,DNA能与蛋白质结合形成染色体,整组染色体则统称为染色体组。对于人类而言,正常的体细中含有46条染色体。染色体在细胞分裂之前会先在分裂间期完成复制,细胞分裂间期又可划分为:G1期-DNA合成前期、S期-DNA合成期、G2-DNA合成后期。对于真核生物,如动物、植物及真菌而言,染色体主要存在于细胞核内;而对于原核生物,如细菌而言,则主要存在于细胞质中的拟核内。染色体上的染色质蛋白,如组织蛋白,能够将DNA进行组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录。

2、物理性质

DNA是高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度,可被甲基绿染成绿色。DNA对紫外线(260nm)有吸收作用,利用这一特性,可以对DNA进行含量测定。当核酸变性时,吸光度升高,称为增色效应;当变性核酸重新复性时,吸光度又会恢复到原来的水平。较高温度、有机溶剂、酸碱试剂、尿素、酰胺等都可以引起DNA分子变性,即DNA双链碱基间的氢键断裂,双螺旋结构解开—也称为DNA的解螺旋。

3、分子结构

DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3’,5’-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。

一级结构

是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3',5'-磷酸二酯键彼此连接起来的线形多聚体,以及其基本单位-脱氧核糖核苷酸的排列顺序。

每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:腺嘌呤(adenine,缩写为A),胸腺嘧啶(thymine,缩写为T),胞嘧啶(cytosine,缩写为C)和鸟嘌呤(guanine,缩写为G)。DNA的四种含氮碱基组成具有物种特异性。即四种含氮碱基的比例在同物种不同个体间是一致的,但在不同物种间则有差异。DNA的四种含氮碱基比例具有奇特的规律性,每一种生物体DNA中A=T,C=G查加夫(Chargaff)法则(即碱基互补配对原则)。

二级结构

二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见(如图)。也有的DNA为单链,一般见于原核生物,如大肠杆菌噬菌体φX174、G4、M13等。有的DNA为环形,有的DNA为线形。在碱A与T之间可以形成两个氢键,G与C之间可以形成三个氢键,使两条多聚脱氧核苷酸形成互补的双链,由于组成碱基对的两个碱基的分布不在一个平面上,氢键使碱基对沿长轴旋转一定角度,使碱基的形状像螺旋桨叶片的样子,整个DNA分子形成双螺旋缠绕状。碱基对之间的距离是0.34nm,10个碱基对转一周,故旋转一周(螺距)是3.4nm,这是β-DNA的结构,在生物体内自然生成的DNA几乎都是以β-DNA结构存在。

三级结构

是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋是克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象*存在时,双螺旋处于能量最低状态此为松弛态。如果使这种正常的DNA分子额外地多转几圈或少转几圈,就是双螺旋产生张力,如果DNA分子两端是开放的,这种张力可通过链的转动而释放出来,DNA就恢复到正常的双螺旋状态。但如果DNA分子两端是固定的,或者是环状分子,这种张力就不能通过链的旋转释放掉,只能使DNA分子本身发生扭曲,以此抵消张力,这就形成超螺旋,是双螺旋的螺旋。

四级结构

核酸以反式作用存在(如核糖体、剪接体),这可看作是核酸的四级水平的结构。

拓扑结构

也是DNA存在的一种形式。DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。超螺旋结构是拓扑结构的主要形式,它可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。

结构特点

DNA的结构一般划分为一级结构、二级结构、三级结构、四级结构四个阶段。

4、主要类别

单链DNA

单链DNA(single-strandedDNA)大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA在细胞内增殖时则形成双链DNA。

闭环DNA

闭环DNA(closedcircularDNA)没有断口的双链环状DNA,亦称为超螺旋DNA。由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。

连接DNA

连接DNA(LinkerDNA):核小体中除146bp核心DNA外的所有DNA。

模板DNA

模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好).就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。

互补DNA

互补DNA(cDNA,complementaryDNA)构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子.因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的.所以一个cDNA分子就代表一个基因.但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子.所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列---内含子。

5、相关历史

最早分离出DNA的弗雷德里希·米歇尔是一名瑞士医生,他在1869年,从废弃绷带里所残留的脓液中,发现一些只有显微镜可观察的物质。由于这些物质位于细胞核中,因此米歇尔称之为“核素”(nuclein)。到了1919年,菲巴斯·利文进一步辨识出组成DNA的碱基、糖类以及磷酸核苷酸单元,他认为DNA可能是许多核苷酸经由磷酸基团的联结,而串联在一起。不过他所提出概念中,DNA长链较短,且其中的碱基是以固定顺序重复排列。1937年,威廉·阿斯特伯里完成了第一张X光衍射图,阐明了DNA结构的规律性。

1928年,弗雷德里克·格里菲斯从格里菲斯实验中发现,平滑型的肺炎球菌,能转变成为粗糙型的同种细菌,方法是将已死的平滑型与粗糙型活体混合在一起。这种现象称为“转型”。但造成此现象的因子,也就是DNA,是直到1943年,才由奥斯瓦尔德·埃弗里等人所辨识出来。1953年,阿弗雷德·赫希与玛莎·蔡斯确认了DNA的遗传功能,他们在赫希-蔡斯实验中发现,DNA是T2噬菌体的遗传物质。

剑桥大学里一面纪念克里克与DNA结构的彩绘窗。到了1953年,当时在卡文迪许实验室的詹姆斯·沃森与佛朗西斯·克里克,依据伦敦国王学院的罗莎琳·富兰克林所拍摄的X光衍射图及相关资料,提出了最早的DNA结构精确模型,并发表于《自然》期刊。五篇关于此模型的实验证据论文,也同时以同一主题发表于《自然》。其中包括富兰克林与雷蒙·葛斯林的论文,此文所附带的X光衍射图,是沃森与克里克阐明DNA结构的关键证据。此外莫里斯·威尔金斯团队也是同期论文的发表者之一。富兰克林与葛斯林随后又提出了A型与B型DNA双螺旋结构之间的差异。1962年,沃森、克里克以及威尔金斯共同获得了诺贝尔生理学或医学奖。

克里克在1957年的一场演说中,提出了分子生物学的中心法则,预测了DNA、RNA以及蛋白质之间的关系,并阐述了“转接子假说”(即后来的tRNA)。1958年,马修·梅瑟生与富兰克林·史达在梅瑟生-史达实验中,确认了DNA的复制机制。后来克里克团队的研究显示,遗传密码是由三个碱基以不重复的方式所组成,称为密码子。这些密码子所构成的遗传密码,最后是由哈尔·葛宾·科拉纳、罗伯特·W·霍利以及马歇尔·沃伦·尼伦伯格解出。为了测出所有人类的DNA序列,人类基因组计划于1990年代展开。到了2001年,多国合作的国际团队与私人企业塞雷拉基因组公司,分别将人类基因组序列草图发表于《自然》与《科学》两份期刊。

6、技术发展

早期发现

DNA是1944年由美国人埃弗里发现的;1953年克里克教授绘制出DNA的双螺旋线结构图;1985年莱斯特大学的亚历克·杰弗里斯教授又发明利用DNA对人体进行鉴别的办法;DNA自1988年起开始应用在司法方面;1994年7月29日,法国法律规定了使用基因标记的条件。

另外詹姆斯·沃森也有贡献20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这4点,缺一不可,如何建构一个DNA分子模型解释这一切?

根据科学分析,每一个人拥有400万亿个细胞(皮肤、肌肉、神经等),人体细胞除了红血球外都拥有一个由46种染色体组成的细胞核,染色体本身又由DNA染色体丝构成,这种染色体丝在所有细胞中都是相同的。DNA由被称作A(adenine)、T(thymine)、G(guanine)和C(cytosine)的核酸组成,正是它们构成我们人体的基因。根据DNA可以断定两代人之间的亲缘关系,因为一个孩子总是分别从父亲和母亲身上接受一半基因物质的。科学家们还把DNA研究的目标放在确定导致人们生病的基因起源方面,以便将来更好地认识、治疗和预防危害人类健康的各种疾病。

DNA的可信度如何呢?两个人的染色体是否会相似?根据科学试验,这种可能性只有千万分之一。然而,在所有过程中出现差错将是可能的,这主要是在提取和化验标本的时候,标本也可能受到另一个人DNA的污染。为了保证DNA的可靠性,必须在提取标本和化验分析时严格把关。不仅可以避免可能的错误,而且大大加快了DNA检查的速度。

垃圾DNA

一项针对基因组进行的广泛比较研究显示,问题的答案可能就隐藏在生物的垃圾脱氧核糖核酸(DNA)中。美国科学家发现,生物越复杂,其携带的垃圾DNA就越多,而恰恰是这些没有编码的“无用”DNA帮助高等生物进化出了复杂的机体。

自从第一个真核生物——包括从酵母到人类的有细胞核的生物——的基因组被破译以来,科学家一直想知道,为什么生物的大多数DNA并没有形成有用的基因。从突变保护到染色体的结构支撑,对于这种所谓的垃圾DNA的可能解释有许多种。但是2004年从人类、小鼠和大鼠身上得到的完全一致的关于垃圾DNA的研究结果却表明,在这一区域中可能包含有重要的调节机制,从而能够控制基础的生物化学反应和发育进程,这将帮助生物进化出更为复杂的机体。与简单的真核生物相比,复杂生物有更多的基因不会发生突变的事实无疑极大地强化了这一发现。

为了对这一问题有更深的了解,由美国加利福尼亚大学圣塔克鲁斯分校(UCSC)的计算生物学家DavidHaussler领导的一个研究小组,对5种脊椎动物——人、小鼠、大鼠、鸡和河豚——的垃圾DNA序列与4种昆虫、两种蠕虫和7种酵母的垃圾DNA序列进行了比较。研究人员从对比结果中得到了一个惊人的模式:生物越复杂,垃圾DNA似乎就越重要。

这其中暗含的可能性在于,如果不同种类的生物具有相同的DNA,那么这些DNA必定是用来解决一些关键性的问题的。酵母与脊椎动物共享了一定数量的DNA,毕竟它们都需要制造蛋白质,但是只有15%的共有DNA与基因无关。研究小组在2005年7月14日的《基因组研究》杂志网络版上报告说,他们将酵母与更为复杂的蠕虫进行了比较,后者是一种多细胞生物,发现有40%的共有DNA没有被编码。随后,研究人员又将脊椎动物与昆虫进行了对比,这些生物比蠕虫更为复杂,结果发现,有超过66%的共有DNA包含有没有编码的DNA。

参与该项研究工作的UCSC计算生物学家AdamSiepel指出,有关蠕虫的研究结果需要慎重对待,这是由于科学家仅仅对其中的两个基因组进行了分析。尽管如此,Siepel还是认为,这一发现有力地支持了这样一种理论,即脊椎动物和昆虫的生物复杂性的增加主要是由于基因调节的精细模式。

DNA探针

DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类Alu探针。这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,加之分子杂交技术的高敏感性,分子杂交在临床微生物诊断上具有广阔的前景。

细菌的基因组大小约5×106bp,约含3000个基因。各种细菌之间绝大部分DNA是相同的,要获得某细菌特异的核酸探针,通常要采取建立细菌基因组DNA文库的办法,即将细菌DNA切成小片段后分别克隆得到包含基因组的全信息的克隆库。然后用多种其它菌种的DNA作探针来筛选,产生杂交信号的克隆被剔除,最后剩下的不与任何其它细菌杂交的克隆则可能含有该细菌特异性DNA片段。将此重组质粒标记后作探针进一步鉴定,亦可经DNA序列分析鉴定其基因来源和功能。因此要得到一种特异性DNA探针,常常是比较繁琐的。探针DNA克隆的筛选也可采用血清学方法,所不同的是所建DNA文库为可表达性,克隆菌落或噬斑经裂解后释放出表达抗原,然后用来源细菌的多克隆抗血清筛选阳性克隆,所得到多个阳性克隆再经其它细菌的抗血清筛选,最后只与本细菌抗血清反应的表达克隆即含有此细菌的特异性基因片段,它所编码的蛋白是该菌种所特有的。用这种表达文库筛选得到的显然只是特定基因探针。

DNA修复

DNA修复(DNArepairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。所以研究DNA修复也是探索生命的一个重要方面,而且与军事医学、肿瘤学等密切相关。对不同的DNA损伤,细胞可以有不同的修复反应。

DNA复制

DNA复制是指DNA双链在细胞分裂以前进行的复制过程,复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来的双链一样。这个过程是通过名为半保留复制的机制来得以顺利完成的。复制可以分为以下几个阶段:

起始阶段:解旋酶在局部展开双螺旋结构的DNA分子为单链,引物酶辨认起始位点,以解开的一段DNA为模板,按照5'到3'方向合成RNA短链。形成RNA引物。

DNA片段的生成:在引物提供了3'-OH末端的基础上,DNA聚合酶催化DNA的两条链同时进行复制过程,由于复制过程只能由5'->3'方向合成,因此一条链能够连续合成,另一条链分段合成,其中每一段短链成为冈崎片段(Okazakifragments)。

RNA引物的水解:当DNA合成一定长度后,DNA聚合酶水解RNA引物,补填缺口。

DNA连接酶将DNA片段连接起来,形成完整的DNA分子。

最后DNA新合成的片段在旋转酶的帮助下重新形成螺旋状。

DNA重组

重组DNA是一种人工合成的脱氧核糖核酸。它是把一般不同时出现的DNA序列组合到一起而产生的。从遗传工程的观点来看重组DNA是把相关的DNA添加到已有生物的基因组中,比如细菌的质粒中,其目的是为了改变或者添加特别是的特性,比如免疫。重组DNA与遗传重组不是一回事。它不是重组细胞内或者染色体上已经存在的基因组,而完全是通过外部工程达到的。重组蛋白质是从重组DNA合成出来的蛋白质。

重组DNA技术是1973年由斯坦利·诺曼·科恩和赫伯特·玻意尔设计的。1974年他们发表了他们的设计。在这篇论文中他们描述了分离和放大基因或者DNA片段,然后精确地把它们插入其它细胞中,由此制造出转基因细菌。沃纳·亚伯、丹尼尔·那森斯和汉弥尔顿·史密斯发明了限制酶才使得重组DNA技术可行,为此他们获得了1978年诺贝尔医学奖。

超速离心

近代质粒DNA分离纯化以从大肠杆菌中分离为代表,鉴于大肠杆菌(E.coli)在分子生物学研究中的重要地位,从大肠杆菌(E.coli)中分离纯化质粒DNA(PlasmidDNA)成为超离心技术中一个重要课题。而质粒DNA的快速分离纯化又对超离心设备(超速离心机、转头和附属设备)提出了更高要求。

针对E.coli的显微结构待点,在进行超离心分离纯化质粒DNA之前的预处理顺序是:

沉淀物可以在加入TE缓冲液(10mMTris-HCL,lmMEDTA,pH8.0)后分子筛技术去除蛋白和RNA;也可以用超速离心法去除蛋白质和RNA,去级状DNA或DNA断片。

质粒DNA超速离心的分离方法

传统的分离方法:数年前,由于受设备条件限制,质粒DNA的分离一般用CsCl平衡等密度离心法,自形成梯度。以10~12ml单管容量为例,用甩平转头分离,36.000rpm×60小时,用角式转头分离45,000rpm×36小时,前者包括加减速在内共用去1.3亿转驱动部寿命,后者也要用去1亿转驱动部寿命,这对当时超速离心机总寿命为100~200亿转来看,无疑每次实验费用过高,加上CsCl用量多、价格贵等因素,使这类分离纯化工作成为非常昂贵的实验。

质粒DNA超速离心分离的最新进展

1、超速垂直管转头的离心分离(钦合金或碳纤维制造的):从1975年垂直管转头向世后,最高转速从50,000rpm到120,000rpm,RCFmax可达700,000Xg,90年代开发的新机型和转头己能够使质粒DNA垂直管离心分离实验做起来得心应手。

2、近垂直管转头离心分离:为了消除垂直管转头用于质粒DNA离心在壁部形成的RNA沉淀对已形成的DNA区带的污染,同时也为了改进一般斜角式转头(倾角25——35)由于沉降距离较长,因而分离时间也较长的缺点,近几年开发了多种近垂直管转头(即NearVerticalTubeRot时,简称NVT转头或NeoAngleRotor,小假角转头,简称NT).它们的离心管纵剖面中心轴线与离心机驱动轴线之间夹角在7.5——10之间,转速从65,000rpm到120,OOOrpm,RCFmax可达646,000×g单管容量从2ml至13.5ml。NVT(或NT)转头的开发主要是为质粒DNA分离而设计,当然它也适用于线粒体DNA、染色体DNA、RNA及血清脂蛋白的分离·纯化。

3、不连续阶梯梯度分离:质校DNA分离纯化传统方法是采用金管CsCl自形成梯度平衡等密度离心法,离心开始时金管CsCl密度均一,样品均匀分布其中。

交互作用

脱氧核糖核酸若要发挥其功用,必须依赖与蛋白质之间的交互作用,有些蛋白质的作用不具专一性,有些则只专门与个别的脱氧核糖核酸序列结合。聚合酶在各类酵素中尤其重要,此种蛋白质可与脱氧核糖核酸结合,并作用于转录或脱氧核糖核酸复制过程。

脱氧核糖核酸与组织蛋白(右图白色部分)的交互作用,这种蛋白质中的碱性氨基酸(左下蓝色),可与脱氧核糖核酸上的酸性磷酸基团结合(右下红色)。

结构蛋白可与脱氧核糖核酸结合,是非专一性脱氧核糖核酸-蛋白质交互作用的常见例子。染色体中的结构蛋白与脱氧核糖核酸组合成复合物,使脱氧核糖核酸组织成紧密结实的染色质构造。对真核生物来说,染色质是由脱氧核糖核酸与一种称为组织蛋白的小型碱性蛋白质所组合而成;而原核生物体内的此种结构,则掺杂了多种类型的蛋白质。双股脱氧核糖核酸可在组织蛋白的表面上附着并缠绕整整两圈,以形成一种称为核小体的盘状复合物。组织蛋白里的碱性残基,与脱氧核糖核酸上的酸性糖磷酸骨架之间可形成离子键,使两者发生非专一性交互作用,也使复合物中的碱基序列相互分离。在碱性氨基酸残基上所发生的化学修饰有甲基化、磷酸化与乙酰化等,这些化学作用可使脱氧核糖核酸与组织蛋白之间的作用强度发生变化,进而使脱氧核糖核酸与转录因子接触的难易度改变,影响转录作用的速率。其他位于染色体内的非专一性脱氧核糖核酸结合蛋白,还包括一种能优先与脱氧核糖核酸结合,并使其扭曲的高移动性群蛋白。这类蛋白质可以改变核小体的排列方式,产生更复杂的染色质结构。

脱氧核糖核酸结合蛋白中有一种专门与单股脱氧核糖核酸结合的类型,称为单股脱氧核糖核酸结合蛋白。人类的复制蛋白A是此类蛋白中获得较多研究的成员,作用于多数与解开双螺旋有关的过程,包括脱氧核糖核酸复制、重组以及脱氧核糖核酸修复。这类结合蛋白可固定单股脱氧核糖核酸,使其变得较为稳定,以避免形成茎环(stem-loop),或是因为核酸酶的作用而水解。

相对而言,其他的蛋白质则只能与特定的脱氧核糖核酸序列进行专一性结合。大多数关于此类蛋白质的研究集中于各种可调控转录作用的转录因子。这类蛋白质中的每一种,都能与特定的脱氧核糖核酸序列结合,进而活化或抑制位于启动子附近序列的基因转录作用。转录因子有两种作用方式,第一种可以直接或经由其他中介蛋白质的作用,而与负责转录的RNA聚合酶结合,再使聚合酶与启动子结合,并开启转录作用。第二种则与专门修饰组织蛋白的酵素结合于启动子上,使脱氧核糖核酸模板与聚合酶发生接触的难度改变。

由于目标脱氧核糖核酸可能散布在生物体中的整个基因组中,因此改变一种转录因子的活性可能会影响许多基因的运作。这些转录因子也因此经常成为信号传递过程中的作用目标,也就是作为细胞反映环境改变,或是进行分化和发育时的媒介。具专一性的转录因子会与脱氧核糖核酸发生交互作用,使脱氧核糖核酸碱基的周围产生许多接触点,让其他蛋白质得以“读取”这些脱氧核糖核酸序列。多数的碱基交互作用发生在大凹槽,也就是最容易从外界接触碱基的部位。

7、应用领域

亲子鉴定

鉴定亲子关系用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞等都可以用于用亲子鉴定,十分方便。

一个人有23对(46条)染色体,同一对染色体同一位置上的一对基因称为等位基因,一般一个来自父亲,一个来自母亲。如果检测到某个DNA位点的等位基因,一个与母亲相同,另一个就应与父亲相同,否则就存在疑问了。

利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别。DNA亲子鉴定,否定亲子关系的准确率几近100%,肯定亲子关系的准确率可达到99.99%。

DNA(脱氧核糖核酸)是人身体内细胞的原子物质。每个原子有46个染色体,另外,男性的精子细胞和女性的卵子,各有23个染色体,当精子和卵子结合的时候。这46个原子染色体就制造一个生命,因此,每人从生父处继承一半的分子物质,而另一半则从生母处获得。

DNA亲子鉴定测试与传统的血液测试有很大的不同。它可以在不同的样本上进行测试,包括血液,腮腔细胞,组织细胞样本和精液样本。由于血液型号,例如A型,B型,O型或RH型,在人口中比较普遍,用于分辨每一个人,便不如DNA亲子鉴定测试有效。除了真正双胞胎外,每人的DNA是独一无二的.由于它是这样独特,就好像指纹一样,用于亲子鉴定,DNA是最为有效的方法。我们的结果通常是比法庭上要求的还准确10到100倍。

通过遗传标记的检验与分析来判断父母与子女是否亲生关系,称之为亲子试验或亲子鉴定。DNA是人体遗传的基本载体,人类的染色体是由DNA构成的,每个人体细胞有23对(46条)成对的染色体,其分别来自父亲和母亲。夫妻之间各自提供的23条染色体,在受精后相互配对,构成了23对(46条)孩子的染色体。如此循环往复构成生命的延续。

由于人体约有30亿个碱基对构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础。

传统的血清方法能检测红细胞血型、白细胞血型、血清型和红细胞酶型等,这些遗传学标志为蛋白质(包括糖蛋白)或多肽,容易失活而导致检材得不到理想的检验结果。此外,这些遗传标志均为基因编码的产物,多态信息含量(PIC)有限,不能反映DNA编码区的多态性,且这些遗传标志存在生理性、病理性变异(如A型、O型血的人受大肠杆菌感染后,B抗原可能呈阳性。因此,其应用价值有限。

DNA检验可弥补血清学方法的不足,故受到了法医物证学工作者的高度关注,近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。特别提到一点:同卵双胞胎的DNA检测结果是一样的。

隐私保护

美国一位遗传学研究者通过在网上发布的人类DNA信息,可以轻而易举地确定从研究对象组中随机选出的5个匿名者的身份,还找到了其整个家族,确定了近50人的身份。

在网上发布的遗传数据,那些来自1000多人的长达几十亿个DNA字母的串子,看似是完全匿名的。但仅仅靠一些网上的聪明侦探手段,一位遗传学研究者就把从研究对象组中随机选出的5个人的身份确定了出来。不仅如此,他还找到他们的整个家族,确定了近50个人的身份,虽然这些亲属与研究一点也不沾边。

这位研究者并未公布他所发现的人的姓名,但这项发表在周四的《科学》(Science)杂志上的工作表明,保护参加医学研究的志愿者的隐私不是一个简单的事情,因为他们提供的遗传信息需要公开,以便科学家使用。

研究人员表示,“让认为能够完全保护隐私或使数据匿名的幻想继续下去,已不再是一个可维持的立场。”

8、发展计划

人类基因组计划(humangenomeproject,HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西*、德意志联邦*、*和中国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并确定其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗登月计划并称为三大科学计划。

2000年6月26日,参加人类基因组工程项目的美国、英国、法国、德国、日本和中国,六国科学家共同宣布,人类基因组草图的绘制工作已经完成。最终完成图要求测序所用的克隆能忠实地代表常染色体的基因组结构,序列错误率低于万分之一。95%常染色质区域被测序,每个Gap小于150kb。完成图将于2003年完成,比预计提前2年。

美国和英国科学家2006年5月18日在英国《自然》杂志网络版上发表了人类最后一个染色体——1号染色体的基因测序。

在人体全部22对常染色体中,1号染色体包含基因数量最多,达3141个,是平均水平的两倍,共有超过2.23亿个碱基对,破译难度也最大。一个由150名英国和美国科学家组成的团队历时10年,才完成了1号染色体的测序工作。

科学家不止一次宣布人类基因组计划完工,但推出的均不是全本,这一次杀青的“生命之书”更为精确,覆盖了人类基因组的99.99%。解读人体基因密码的“生命之书”宣告完成,历时16年的人类基因组计划书写完了最后一个章节。

作为人类基因组计划的后续计划,TheENCODEProject在2003年9月启动的跨国研究项目。该项目旨在解析人类基因组中的所有功能性元件。该项目联合了来自美国,英国,西班牙,新加坡和日本的32个实验室的422名科学家的努力,获得了迄今最详细的人类基因组分析数据(他们获得并分析了超过15兆兆字节的原始数据)。研究花费了约300年的计算机时间,对147个组织类型进行了分析,以确定哪些能打开和关闭特定的基因,以及不同类型细胞之间的“开关”存在什么差异。

2012年9月5日,ENCODE项目的阶段性研究结果被整理成30篇论文发表于《自然》(6篇),《基因组研究》(6篇)和《基因组生物学》(18篇)上。研究结果显示,人类基因组内的非编码DNA至少80%是有生物活性的,而并非之前认为的“垃圾”DNA(junkDNA)。这些新的发现有望帮助研究人员理解基因受到控制的途径,以及澄清某些疾病的遗传学风险因子。

2012年12月21日,ENCODE项目被《科学》杂志评为本年度十大科学突破之一。

推荐阅读