欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是:首页  > 科普文章

核电站

科普小知识2022-10-03 18:04:09
...

核电站(nuclearpowerplant)是利用核裂变(NuclearFission)或核聚变(NuclearFusion)反应所释放的的能量产生电能的发电厂。目前商业运转中的核能发电厂都是利用核裂变反应而发电。截止2001年年底全世界正在运行的核电站共有438座,美国最多,达104座。

1、简介

核电站以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,来加热水使之变成蒸


核电站

汽。蒸汽通过管路进入汽轮机,推动汽轮发电机发电。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。

2、构成结构

核电站又称核电厂,它指用铀、钚等作核燃料,将它在裂变反应中产生的能量转变为电能的发电厂。核电厂主要以反应


核电站结构示意图

堆的种类相区别,有压水堆核电厂、沸水堆核电厂、重水堆核电厂、石墨水冷堆核电厂、石墨气冷堆核电厂、高温气冷堆核电厂和快中子增殖堆核电厂等。

核电厂由核岛(主要是核蒸汽供应系统)、常规岛(主要是汽轮发电机组)和电厂配套设施三大部分组成。

核电站大体可分为两部分:一部分是利用核能产生蒸汽的核岛,包括反应堆装置和一回路系统;另一部分是利用蒸汽发电的常规岛,包括汽轮发电机系统。核燃料在反应堆内产生的裂变能,主要以热能的形式出现。它经过冷却剂的载带和转换,最终用蒸汽或气体驱动涡轮发电机组发电。核电厂所有带强放射性的关键设备都安装在反应堆安全壳厂房内,以便在失水事故或其他严重事故下限制放射性物质外溢。为了保证堆芯核燃料在任何情况下等到冷却而免于烧毁熔化,核电厂设置有多项安全系统。

核电站除了关键设备——核反应堆外,还有许多与之配合的重要设备。以压水堆核电站为例,它们是主泵,稳压器,蒸汽发生器,安全壳,汽轮发电机和危急冷却系统等。它们在核电站中有各自的特殊功能。

主泵

主泵(RCP)如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。它的功用是在正常运行时,使冷却剂强迫


机组构成

循环通过堆芯,载出堆芯热量,然后流过蒸汽发生器传热管内侧,将热量传给蒸汽发生器二次侧给水;事故工况下,排出堆内衰变热。

稳压器

稳压器(PRZ)又称压力平衡器,是用来控制反应堆系统压力变化的设备。在正常运行时,起保持压力的作用;在发生事故时,提供超压保护。稳压器里设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。

蒸汽发生器

蒸汽发生器(SG)它的作用是把通过反应堆的冷却剂的热量传给二次回路水,并使之变成蒸汽,再通入汽轮发电机的汽缸作功。

安全壳

安全壳(Containment)用来控制和限制放射性物质从反应堆扩散出去,以保护公众免遭放射性物质的伤害。万一发生罕见的反应堆一回路水外逸的失水事故时,安全壳是防止裂变产物释放到周围的最后一道屏障。安全壳一般是内衬钢板的预应力混凝土厚壁容器。

汽轮机

核电站用的汽轮发电机在构造上与常规火电站用的大同小异,所不同的是由于蒸汽压力和温度都较低,所以同等功率机组的汽轮机体积比常规火电站的大。

危急冷却系统

为了应付核电站一回路主管道破裂的极端失水事故(LOCA)的发生,近代核电站都设有危急冷却系统。它是由安全注射


核电站危急冷却系统

系统和安全壳喷淋系统组成。一旦接到极端失水事故的信号后,安全注射系统向反应堆内注射高压含硼水,喷淋系统向安全壳喷水和化学药剂。便可缓解事故后果,限制事故蔓延。注射系统:当核电站一回路系统的管道或设备发生破损事故后,安全注射系统用来向堆芯紧急注入高硼冷却水,防止堆芯因失水而造成烧毁。

安全注射系统设有两套安全注射管系。一套为安全注射箱(ACC)管系,在安全注射箱内储有一定容积的高硼水,并用氮气充压,使注射箱内维持恒定的压力。当一回路系统一旦发生大破裂事故,其压力低于安全注射箱的压力时,安全注射箱内的硼水就通过止水阀自动注入一回路系统。另一套为安全注射泵管系,当一回路系统因发生破损事故而压力下降至一定值时,安全注射泵就自动启动,将换料水箱内的硼水注射至一回路系统,换料水箱内的硼水被汲完后,安全注射泵可改汲从一回路系统泄露至安全壳底部的地坑水,使硼水仍能连续不断地注入一回路系统冷却堆芯。

在电站失去外电源情况下,安全注射泵的电源可由应急柴油发电机组自动供电。

安全壳喷淋系统

在核电站发生失水事故或二回路主蒸汽管道破裂事故时,安全壳内充满了带放射性高压蒸汽,安全壳喷淋系统将用来降


核电站安全壳喷淋系统

低安全壳内压力和温度,使放射性蒸汽凝结下来。

在安全壳的上部设有相当数量的喷淋头,当安全壳内由于发生主管道破损事故而蒸汽压力升高时,安全壳喷淋系统的泵就自动启动,将换料水箱内的硼水和NaOH贮箱内供除碘用的NaOH溶液一起汲入,以一定的比例混合,再由喷淋头喷入安全壳内。当换料水箱的水被用尽后,喷淋泵可改汲安全壳内的地坑水。此时,地坑水先由设备冷却水冷却后再重新喷淋至安全壳内。

在核电站断电情况下,安全喷淋泵的电源也由应急柴油发电机组自动供电。

3、工作原理

核电站是利用原子核内部蕴藏的能量产生电能的新型发电站。


核电站发电原理

核电站以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量。

核电站用的燃料是铀。用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,就会产生电,这就是最普通的压水反应堆核电站的工作原理。

利用蒸汽通过管路进入汽轮机,推动汽轮发电机发电,使机械能转变成电能。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。

核反应堆,又称为原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置。

核反应堆的原理是,当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。

链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。

但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。

4、安全设备

在核燃料和环*部空气之间设置了四道屏障。即第一道屏障:燃料芯块核然料放在氧化铀陶瓷芯块中,并使得大部分裂变产物和气体产物95%以上保存在芯块内。第二道屏障:燃料包壳,燃料芯块密封在铅合金制造的包壳中构成核燃料芯棒错合金,具有足够的强度且在高温下不与水发生反应。第三道屏障:压力管道和容器冷却剂系统将核燃料芯棒封闭在20cm以上的钢质耐高压系统中避免放射性物质泄漏到反应堆厂房内。第四道屏障:反应堆安全壳用预应力钢筋混凝土构筑壁厚近100cm,内表面加有6mm的钢衬,可以抗御来自内部或外界的飞出物,防止放射性物质进入环境。

核电站配置的外设安全系统有以下几个方面:

①隔离系统,用来将反应堆厂房隔离开来,主要有自动关闭穿过厂房的各条运行管道的阀门收集厂房内泄漏物质将其过滤后再排出厂外。

②注水系统,在反应堆可能“失水”时,向堆芯注水,以冷却燃料组件避免包壳破裂。注入水中含有硼,用以制止核链式反应。注水系统使用压力氮气,在无电流和无人操作情况下在一定压力下可自动注水。

③事故冷却器和喷淋系统,用来冷却厂房以降低厂房的压力。在厂房压力上升时先启动空气冷却(风机—换热器)的事故冷却器;再进一步可以启动厂房喷淋系统将冷水或含翻水喷入厂房,以降热和降压。

以上所有安全保护系统均采用独立设备和冗余布置,均备有事故电源,安全系统可以抗地震和在蒸汽—空气及放射性物质的恶劣环境中运行。万一发生了核外泄事故,应启动应急计划。应急计划的内容主要包括:疏散人员,封闭核污染区(核反应堆及核电站),清除核污染,以保证人身安全和环境清洁。

5、测量仪表

核电站常用的测量仪表有流量、温度、液体、压力四类检测仪表,如铠装热电偶、薄膜热电偶、液柱式、热电偶温度计、应变式等压力表和差压计、差压式液位计、浮子式液位计、雷达液位计、差压式流量计、液体静力液位计、转子流量计、电磁流量计等都被广泛应用于核电领域。除了这些常规测量仪器仪表,核电领域还需要振动测量、位移测量等机械量参数测量仪表、分析测量仪表、硼表以及大型仪表控制系统等。

6、防护措施

为了保护核电站工作人员和核电站周围居民的健康。核电站的设计、建造和运行均采用纵深防御的原则,从设备、措施上提供多等级的重叠保护,以确保核电站对功率能有效控制,对燃料组件能充分冷却,对放射性物质不发生泄漏。

纵深防御原则一般包括五层防线

第一层防线:

精心设计、制造、施工,确保核电站有精良的硬件环境。建立周密的程序,严格的制度,对核电站工作人员有高水平的教育和培训,人人注意和关心安全,有完备的软件环境。

第二层防线:

加强运行管理和监督,及时正确处理异常情况,排除故障。

第三层防线:

在严重异常情况下反应堆正常的控制和保护系统动作,防止设备故障和人为差错造成事故。

第四层防线:

发生事故情况时,启用核电站安全系统包括各外设安全系统加强事故中的电站管理,防止事故扩大保护反应堆厂房安全壳。

第五层防线:

万一发生极不可能发生的事故并伴有放射性外泄启用厂内外应急响应计划努力减轻事故对周围居民和环境的影响。

安全保护系统均采用独立设备和冗余布置,均备有事故电源,安全系统可以抗地展和在蒸汽—空气及放射性物质的恶劣环境中运行。核电站运行人员须经严格的技术和管理培训,通过国家核安全局主持的资格考试,获得国家核安全局颁发的运行值岗操作员或高级操作员执照才能上岗,无照不得上岗。执照在规定期内有效,过期后必须申请核发机关再次审查。

万一发生了核外泄事故,应启动应急计划。应急计划的内容主要包括:疏散人员,封闭核污染区(核反应堆及核电站),清除核污染,以保证人身安全和环境清洁。

7、设备种类

压水堆

以压水堆为热源的核电站。

它主要由核岛和常规岛组成。压水堆核电站核岛中的四大部件是蒸汽发生器、稳压器、主泵和堆芯。在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设置的辅助系统。常规岛主要包括汽轮机组及二回等系统,其形式与常规火电厂类似。

沸水堆

以沸水堆为热源的核电站。沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的动力堆。沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。它们都需使用低富集铀作燃料。沸水堆核电站系统有:主系统(包括反应堆);蒸汽-给水系统;反应堆辅助系统等。但发电厂房要做防核处理。

重水堆

以重水堆为热源的核电站。

重水堆是以重水作慢化剂的反应堆,可以直接利用天然铀作为核燃料。重水堆可用轻水或重水作冷却剂,重水堆分压力容器式和压力管式两类。重水堆核电站是发展较早的核电站,有各种类别,但已实现工业规模推广的只有加拿大发展起来的坎杜型压力管式重水堆核电站(CANDU)。

由快中子引起链式裂变反应所释放出来的热能转换为电能的核电站。快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。

世界上已商业运行的核电站堆型,如压水堆、沸水堆、重水堆、石墨气冷堆等都是非增殖堆型,主要利用核裂变燃料,即使再利用转换出来的钚-239等易裂变材料,它对铀资源的利用率也只有1%—2%,但在快堆中,铀-238原则上都能转换成钚-239而得以使用,但考虑到各种损耗,快堆可将铀资源的利用率提高到60%—70%。但快堆开发仍很落后,日本的文殊快堆,以及其他研发中的快堆,都还未正常运行。

8、工作特点

优点

1.核能发电站有多项安全保障措施和多层安全保障系统,可以较好地控制辐射引发的污染。

2.核能发电不会产生温室气体二氧化碳。

3.核能发电所使用的铀燃料,除了发电及制造原子弹外,基本没有其它的用途。

4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30吨的铀燃料,一航次的飞机就可以完成运送。

5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。

缺点

1.核能电厂会产生高低阶放射性废料,或者是使用过的核燃料,虽然体积不大,但因具有放射线,故必须慎重处理。现阶段的核能发电,仍然会产生很多放射性废物,其中尤以高放射性废物的处理及处置为国际性难题。

2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境里,故核能电厂的热污染较严重;核能利用率还较低,能量不能完全转化利用。

3.核能电厂投资成本太大,电力公司的财务风险较高。

4.核能电厂较不适宜做尖峰、离峰的随载运转。

5.兴建核电厂较易引发政治歧见纷争。

6.核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界环境,会对生态及民众造成伤害。

人类首次实现核能发电是在1951年。当年8月,美国原子能委员会在爱达荷州一座钠冷块中子增殖实验堆上进行了世界上第一次核能发电实验并获得成功。1954年,苏联建成了世界上第一座实验核电站,发电功率5000KW。

核岛中主要的设备为核反应堆及由载热剂(冷却剂)提供热量的蒸汽发生器,它替代常规火电站中蒸汽锅炉的作用。常规岛的主要设备为气轮机和发电机及其相应附属设备,常规岛的组成与常规火电站气轮机大致相同。

9、建设选址

核电站的选址要求非常高,选址需非常慎重。根据国际上通行的关于核电站选址有经济、技术、安全、环境和社会四原


大亚湾核电站

则。

经济原则核电站能够有足够的资金来建设和运行,所服务的地区要有足够的用电需求,所以核电站常常选址经济较发达的地区。

后面三个原则则有着密切的相互联系。

核电站必须建在经济发达地区的相对偏远地区,50公里以内不能有大中型城市。要求厂址深部必须没有断裂带通过,而且要求核电站数千米范围内没有活动断裂,厂址100千米海域、50千米内陆,历史上没有发生过6级以上地震,厂址区600年来也没有发生6级地震的构造背景。从核安全的角度来看,核电站选址必须考虑到公众和环境免受放射性事故释放所引起的过量辐射影响,同时要考虑到突发的自然事件或人为事件对核电厂的影响,所以,核电站必须选在人口密度低,易隔离的地区。

另外,核电站在运行过程中要产生巨大热量,所以核电站的选址必须靠近水源,最好是靠海,这也是大型核电站都建在海边的一个重要原因,并且靠海还可以解决大件设备运输问题。万一发生危险,在平的海岸线和放射物均匀发散的情况下,污染陆地面积只是完全在内陆的一半。但是建在海边有利的同时也多出一个风险,就是海啸或者台风带来大浪的可能。通常会建设防波堤来抵御巨浪的冲击。但是防波堤只能抵御一定程度的冲击,如果是比较大的海啸的话,防波堤无能为力,很可能产生十分严重的后果。2011年3月11日日本9级大地震及海啸导致核泄露就是一例。

从上述要求来看,内陆地区核电选址更要慎重,因为内陆地区的水源全部为淡水,并且几乎所有的大江大河都直接向周边城市供应生活用水,在这种情况下建设核电站,一旦发生泄漏事故,后果不堪设想。