欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是:首页  > 科技知识

半英寸UMTS基站接收器设计

科普小知识2022-06-10 01:55:13
...

在满足宏蜂窝基站性能要求的前提下,能达到多高的集成度? 工艺技术仍然限定某些重要的功能部件必需运用特殊的工艺来制造:在射频 (RF) 领域采用 GaAs 和 SiGe、高速 ADC 采用细线 CMOS,而高品质因数滤波器则无法使用半导体材料得以很好地实现。此外,市场还需要更高的密度。

考虑到上述问题,我们决定用系统级封装 (SiP) 技术来开发占用约 1/2 平方英寸 (刚刚大于 3cm2) 面积的接收器。接收器的边界是 50Ω RF 输入、50Ω LO 输入、ADC 时钟输入及数字 ADC 输出。这留待增加 LNA 与 RF 滤波以用于输入、LO 和时钟发生、和数字输出的数字处理。在 15mm x 22mm 封装内,是采用 SiGe 高频组件的信号链路、分立式无源滤波和细线 CMOS ADC。

以下是对两个微型模块 (μModule) 产品进行的设计分析:一个是实现直接转换接收器的 LTM9004;另一个是实现 IF 采样接收器的 LTM9005。

设计目标

设计目标是 UMTS 上行链路 FDD 系统,特别是处于工作频段 I 的中等覆盖区域基站 (详见 3GPP TS25.104 V7.4.0 规范)。就接收器而言,灵敏度是一个主要的考虑因素,在输入信噪比 (SNR) 为 -19.8dB/5MHz 时,要求为 ≤ -111dBm。这意味着,接收器输入端的有效噪声层必须 ≤ -158.2dBm/Hz。

设计分析 ─ 零 IF 或直接转换接收器

LTM9004 是一款直接转换接收器,采用了 I/Q 解调器和基带放大器以及双 14 位、125Msps ADC,如图 1 所示。LTM9004-AC 低通滤波器在 9.42MHz 处有一个 0.2dB 的转角,从而允许 4 个 WCDMA 载波。LTM9004 可与一个 RF 前端一起使用,以构成一个完整的 UMTS 频带上行链路接收器。RF 前端由一个双工器以及一个或多个低噪声放大器 (LNA) 及陶瓷带通滤波器组成。为了最大限度地降低增益和相位失衡,基带链路采用了固定增益拓扑,因此在 LTM9004 之前需要一个 RF 可变增益放大器 (VGA)。以下是此类前端的典型性能例子:

接收器频率范围: 1920 至 1980MHz

RF 增益: 最大值为 15dB

自动增益控制 (AGC) 范围: 20dB

噪声指数: 1.6dB

IIP2: +50dBm

IIP3: 0dBm

P1dB: -9.5dBm

20MHz 时的抑制: 2dB

发送器频带上的抑制: 96dB

半英寸UMTS基站接收器设计

图 1:在 LTM 9004 微型模块接收器中实现的直接转换架构

OFFSET ADJUST:偏移调节

DC OFFSET CONTROL:DC 偏移控制

考虑到 RF 前端的有效噪声贡献,LTM9004 引起的最大可允许噪声必须是 -142.2dBm/Hz。LTM9004 的典型输入噪声是 -148.3dBm/Hz,据此计算出的系统灵敏度为 -116.7dBm。

一般情况下,此类接收器可受益于 ADC 之后的数字化信号的某些 DSP 滤波。在该场合中,假设 DSP 滤波器是一款具有 α = 0.22 的 64 抽头 RRC 低通滤波器。为了在存在同通道干扰信号的情况下运作,接收器在最大灵敏度下必须拥有足够的动态范围。UMTS 规范所要求的最大同通道干扰源为 -73dBm。

请注意,就一个具 10dB 波峰因数的已调信号而言,在 LTM9004 IF 通带内 -1dBFS 的输入电平为 -15.1dBm。在 LTM9004 输入端,这相当于 -53dBm,或 -42.6dBFS 的数字化信号电平。

RF 自动增益控制 (AGC) 设定为最小增益时,接收器必须能从手机中解调出 预计所需的最大信号。这种要求最终设定了在或低于 -1dBFS 时,LTM9004必须提供的最大信号。规范中规定的最小通路损耗为 53dB,而且假定手机的平均功率为 +28dBm。那么在接收器输入端,最大信号电平就是 -25dBm。这等效于 -14.6dBFS 的峰值。

UMTS 系统规范中详细说明几种阻断信号。在存在此类信号的情况下只允许进行规定大小的减敏;灵敏度指标为 -115dBm。其中的第一种是一个相距 5MHz 的邻近通道 (处于 -42dBm 的功率级)。数字化信号电平峰值是 -11.6dBFS。DSP 后处理增加 51dB 抑制,因此在接收器输入端,这个信号相当于一个 -93dBm 的干扰信号。结果灵敏度为 -112.8dBm。

接收器还必须与一个相隔 ≥ 10MHz 的 -35dBm 干扰通道相竞争。微型模块接收器的 IF 抑制将使这个干扰通道衰减至相当于峰值为 -6.6dBFS 的数字化信号电平。经过 DSP 后处理,该干扰通道在接收器输入相当于 -89.5dBm,结果灵敏度为 -109.2dBm。

还必须考虑到带外阻断信号,但是这些带外阻断信号的电平与已经讨论过的带内阻断信号相同。

在所有这些场合中,LTM9004 的 -1dBFS 典型输入电平均远远高于最大预期信号电平。请注意,调制通道的波峰因数将大约在 10 至 12dB,因此在 LTM9004 的输出端上,其中最大的一个将达到约 -6.5dBFS 的峰值功率。

最大的阻断信号是 -15dBm CW 音调 (超过接收频段边缘 ≥ 20MHz)。RF 前端将对这个音调提供 37dB 抑制,因此它出现在 LTM9004 的输入端时将为 -32dBm。在这里,这种电平值的信号仍然不得降低基带微型模块接收器的灵敏度。等效的数字化电平峰值仅为 -41.6dBFS,因此对灵敏度没有影响。

另一个不想要的信号功率源是来自发送器的泄漏。因为这是一个 FDD 应用,所以这里描述的接收器将是与一个同时工作的发送器耦合的。该发送器的输出电平假定为 ≤ +38dBm,同时发送至接收的隔离为 95dB。那么在 LTM9004 输入端出现的泄漏为 -31.5dBm,相对于接收信号偏移至少 130MHz。等效的数字化电平峰值仅为 -76.6dBFS,因此没有降低灵敏度。

直接转换架构的一个挑战是二阶线性度。二阶线性度不够将允许想要或不想要的任何信号,以引起基带的 DC 偏移或伪随机噪声。如果这种伪随机噪声接近接收器的噪声电平,那么上面详细讨论过的那些阻断信号将降低灵敏度。在这些阻断信号存在的每种情况下,系统规范都允许灵敏度降低。按照系统规范的规定,-35dBm 阻断通道可以使灵敏度降至 -105dBm。如我们在上面看到的那样,这种阻断信号在接收器输入端构成了一个 -15dBm 的干扰信号。LTM9004 输入端产生的二阶失真大约比热噪声低 16dB,结果预测灵敏度为 -116.6dBm。

-15dBm 的 CW 阻断信号还将导致二阶分量,在这种情况下该分量是一个 DC 偏移。DC 偏移是不想要的,因为它减小了 A/D 转换器能处理的最大信号。一种减轻 DC 偏移影响的可靠方法是,确保基带微型模块接收器的二阶线性度足够高。在 ADC 输入端,由于这一信号而产生的预测 DC 偏移

请注意,发送器泄漏不包括在系统规范中,因此由于这一信号而产生的灵敏度下降必须保持到最小。发送器输出电平假定为 ≤+38dBm,同时发送至接收的隔离为 95 dB。LTM9004 中产生的二阶失真导致的灵敏度损失将

在规范中对 3 阶线性度仅有一个要求。这就是在两个干扰信号存在的情况下,灵敏度不得降至低于 -115dBm。这两个干扰信号是一个 CW 音调以及一个 WCDMA 通道,每个的大小都是 -48dBm。这些干扰信号每个都以 -28dBm 的大小出现在 LTM9004 的输入端。它们的频率与想要的通道相隔 10MHz 和 20MHz,因此 3 阶互调分量落在基带上。这里,这个分量仍然以伪随机噪声形式出现,因此将使信噪比降低。LTM9004 中产生的 3 阶失真大约比热噪声层低 20 dB,预测灵敏度降低