欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是: 首页

基于光谱技术结合计算机信息处理技术鉴别机油品种的研究

科普小知识 2023-11-03 15:02:09
...

作者:周子立 张怡芳 何勇 吴迪

摘要:利用光谱仪测得三种品牌共150个机油样本的光谱数据,再借助数据处理软件对原始光谱数据进行处理,处理后的数据先采用主成分分析法对机油品种进行定性分类,然后利用小波变换技术提取光谱特征信息,把光谱特征信息作为人工神经网络的输入建立机油品种识别模型,对机油品种进行定量鉴别。从每种机油50个样本共计150个样本中随机抽取120个样本(每种40个样本)用来建立神经网络模型,剩下的30个机油样本用于预测。品种识别准确率达到100%。说明本文提出的方法具有很好的分类和鉴别作用,为机油的品种鉴别提供了一种新方法。

关键词:可见-近红外光谱;信息处理;机油;主成分分析;小波变换;人工神经网络

机油是保证发动机正常运转,减少机件间摩擦的必需润滑剂,其内在品质的检测及品种鉴别一直是机油生产研究的重要课题。国内外学者已在机油品质对减少机械磨损方面做过大量研究[1],也有学者在机油添加剂技术及测量机油粘度方面进行了研究[2],但对机油的品种鉴别方面研究还很少。研究一种简单、快速的机油品种鉴别方法,在目前机油种类繁多,良莠不齐的市场中防止假冒产品,避免劣质机油进入市场是很有必要的。本文以可见-近红外光谱技术为基础研究了机油的品种鉴别,相对用红外光谱技术研究具有容易实现、快速、高效、低成本的特点,便于此项鉴别技术的普及与推广。Www.11665.Com

1 材料与方法

1.1 仪器设备

实验使用美国asd(analytical spectral device)公司的handheld fieldspec光谱仪,其光谱采样间隔(波段宽)1.5nm,测定范围325~1075nm,扫描次数30次,分辨率3.5nm。光源是与光谱仪配套的14.5v卤素灯。光谱数据以ascll码形式导出进行处理,分析软件为asd(view spec pro, unscramble)和dps(data procession system for practical statistics)。

1.2 样本来源及光谱的获取

从市场买来三种机油,浙江壳牌化工石油有限公司生产的壳牌白喜力(shell oil),中国石化公司润滑油分公司生产的长城福星(great wall oil),广西玉柴高级润滑油有限责任公司生产的玉柴牌机油(yuchai oil)。为保证实验样本的均匀性,每种机油选用了10个不同的生产批次和日期。机油用直径65mm高度14mm的透明器皿盛装。装满1个器皿作为一个实验样本。三种机油按不同生产批次和日期各取50个样本,共150个样本。全部样本随机分成建模集和预测集,建模集有120个样本(每个品种40个样本),预测集有30个样本(每个品种10个样本)。光谱仪预热20分钟经白板校准后进行测试。光谱仪置于机油样本的下方,探头距离样本底部10mm,探头视场角为90度,光线自上而下经过机油样本垂直透射在光谱仪探头上,光谱仪对每一个样本扫描30次,取其采样透射光谱平均值,并分别保存。

1.3 计算机信息处理

信息处理是可以使用计算机领域的总称[3],包括数据处理、数据通信、过程控制、模式识别等。信息处理的任务是通过对表示信息的数据进行解释加工,确定数据的含义和形式,从中得到有用信息。信息处理的主要功能是对各应用领域的各种数据进行采集、存储、加工、传输等操作。计算机处理数据时先是把数据变换成计算机内部熟悉的二进制代码,当数据处理后输出时,计算机自动将其转换成人们熟悉的形式。

2 实验结果与讨论

2.1 样本的近红外反射光谱

三种机油典型可见-近红外反射光谱曲线如图1所示。从图中可以看出,三种机油在600nm~700nm光谱范围内有很大的差异,在700nm~1075nm范围光谱曲线具有相同的趋势,但是存在较大的基线漂移,运用二阶求导消除基线漂移,使不同品种的谱线差异更明显。所以,不同品种机油的光谱图有明显区别,并具有一定的特征性,这一差异为机油的不同品种鉴别奠定了数学基础[4]。

2.2 主成分分析对不同品种机油进行聚类

主成分分析不仅能够对降低数据维数[5],将多波长下的光谱数据压缩到有限的几个因子空间内,使数目较少的新变量能最大限度的表征原变量的数据结构特征,并不丢失信息。而且能够通过样本在各因子空间的得分确定所属的类别,所以新变量能够更加形象的表征原样本的品质差异,品种区别等。光谱数据经预处理并选择光谱范围后,对其做主成分分析。以样本在第一主成分和第二主成分上的得分作图,结果见图2。

图2为主成分1、2所作的二维散点得分图,图中横坐标表示每个样本的第一主成分得分值,纵坐标表示每个样本的第二主成分得分值。图2中三种机油明显分成三类,说明主成分1、2对三种机油有较好的聚类作用。从图2中可以看出,长城机油50个样本聚合度很好,紧密地分布在图2中坐标系的第二象限附近;壳牌机油50个样本与其他两个品种的样本分界很清楚,它们都位于图2中坐标系的第一象限附近即坐标系中纵坐标的右边,而其他两个品种的样本大都位于坐标系中纵坐标的左边。玉柴机油的50个样本的聚合度没有前两个品种好,它们分布在图2坐标系中的第三﹑四象限,但是没有跟另两个品种混合起来,它们之间的分界线清楚。分析表明主成分分析对三种机油有一定的聚类作用,能定性区分不同品种的机油。

2.3 基于小波分析提取特征信息建立bp品种预测模型

小波变换是上个世纪末应用数学界最杰出的成果之一,其本质是信号的时间-尺度分析方法,具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力。图像经过小波变换,其低频部分保留了绝大部分信息和能量。同时,在图像的敏感位置(如轮廓线,突出点等),小波换变换后生成的特征矢量的模会相对较大。本文选用的小波为daubechies(db2)正交小波基函数。原始光谱数据经二级db2小波变换后,得到图3所示的图,变换后的低频信号,大约是原始数据三十二分之一,包含了原始光谱几乎全部重要的信息。其他的高频信号包含了大量冗余和杂质,在品种识别中,起到的作用非常的微弱。图3直观地表明,当用小波分析提取的数据[6]作为机油品种识别的特征矢量时,送入神经网络时训练和识别时的好处:有用信息的相对集中、无用信息的剔除和数据量的明显下降。

用小波变换对150个样本,每个样本601个光谱数据进行压缩得到新的变量,新的变量空间从601维下降到21维,数据维数大大降低。将样本随机分为建模集和预测集,建模集包含120个样本,预测包含30个样本。把新变量作为神经网络的输入[7],品种参数(1,2,3)作为神经网络的输出分别代表不同的机油品种,建立品种鉴别模型。各层传递函数都用s型(sigmoid)函数,网络输入层节点数为21,目标误差为0.00001,网络指定参数中最小学习速率为0.1,设定最大迭代次数为1000次。通过调整隐含层的节点数来优化网络结构[8],经过反复试验得到最佳网络结构为21(输入)-12(隐含)-1(输出)3层bp神经网络模型,对120个建模样本的拟合残差为9.863 10-6,对未知的30个样本进行预测,预测准确率为100%(见表1)。

3 结论

本文提出的组合主成分分析,小波变换和bp神经网络的模式识别方法对光谱数据进行了分析和建模,建立的机油品种判别模型能有效地从大量光谱信息中提取有用信息,降低数据维数,简化运算,能较好并快速地判别机油的品种。模型不仅能对不同品种机油进行定性聚类分析,而且还能够定量的预测出未知样本的品种,预测未知样本的机油品种识别率达100%。说明运用可见-近红外光谱技术可以快速、准确的对机油品种进行鉴别,具有很强的实用性,为其他产品的品种识鉴别分析提供了一种新的方法。

参考文献

[1]孙霞,陈波水,谢学兵,等.n-油酰基丙氨酸润滑添加剂的性能研究[j].石油学报(石油加工),2008,24(1).

[2]管亮,冯新泸,熊刚,等.介电谱技术快速测定车用润滑油粘度[j].石油炼制与化工,2008,39(2).

[3]陈青果,刘超颖,韦玉堂,等.基于mdt的快速成形技术计算机信息处理[j].机械设计与制造,2008(11).

[4]傅霞萍,应义斌,刘燕德.近红外光谱技术在水果内部品质无损检测中的应用[j].农机化研究,2004(2).

[5]徐来,吕效平,韩萍芳.主成分分析法在超声波乳化柴油制备中的应用[j].石油学报(石油加工),2008,24(2).

[6]管亮,冯新泸,熊刚,等.介电谱技术评价柴油的润滑性能[j].石油学报(石油加工),2008,24(4).

[7]王洪波,武妍.基于小波变换和bp神经网络的人脸识别方法[j].计算机工程与应用,2004(24).

[8]赵琛,瞿海斌,程翼宇.虫草氨基酸的人工神经网络-近红外光谱快速测定方法[j].光谱学与光谱分析,2004,24(1).