力学
力学是物理学的一个分支,是一门独立的基础学科,主要研究能量和力以及它们与物体的平衡、变形或运动的关系,是有关力、运动和介质(固体、液体、气体和等离子体),宏、细、微观力学性质的学科,研究以机械运动为主,及其同物理、化学、生物运动耦合的现象。力学是一门基础学科,同时又是一门技术学科。它研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系。力学可区分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。
学科设置:基础学科
研究方向:物质机械运动规律
学科分类:静力学、运动学和动力学
重要著作:《自然哲学的数学原理》
1、原理
力学
2、发展简史
力学知识最早起源于对自然现象的观察和在生产劳动中的经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器等器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德初步奠定了静力学即平衡理论的基础。古代人还从对日、月运行的观察和弓箭、车轮等的使用中,了解一些简单的运动规律,如匀速的移动和转动。但是对力和运动之间的关系,只是在欧洲文艺复兴时期以后才逐渐有了正确的认识。16世纪到17世纪间,力学开始发展为一门独立的、系统的学科。伽利略通过对抛体和落体的研究,在实验研究和理论分析的基础上,最早阐明*落体运动的规律,提出加速度的概念,提出惯性定律并用以解释地面上的物体和天体的运动。17世纪末牛顿继承和发展前人的研究成果(特别是开普勒的行星运动三定律),提出力学运动的三条基本定律,使经典力学形成系统的理论。根据牛顿三定律和万有引力定律成功地解释了地球上的落体运动规律和行星的运动轨道。伽利略、牛顿奠定了动力学的基础。此后两个世纪中在很多科学家的研究与推广下,终于成为一门具有完善理论的经典力学。此后,力学的研究对象由单个的*质点,转向受约束的质点和受约束的质点系。这方面的标志是达朗贝尔提出的达朗贝尔原理,和拉格朗日建立的分析力学。其后,欧拉又进一步把牛顿运动定律用于刚体和理想流体的运动方程,这被看作是连续介质力学的开端。运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生于世,在这方面作出贡献的是纳维、柯西、泊松、斯托克斯等人。弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。从牛顿到汉密尔顿的理论体系组成了物理学中的经典力学。在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。这使得19世纪后半叶,在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显著差别。
20世纪初,随着新的数学理论和方法的出现,力学研究又蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题等。这时的先导者是普朗特和卡门,他们在力学研究工作中善于从复杂的现象中洞察事物本质,又能寻找合适的解决问题的数学途径,逐渐形成一套特有的方法。从20世纪60年代起,计算机的应用日益广泛,力学无论在应用上或理论上都有了新的进展。力学在中国的发展经历了一个特殊的过程。与古希腊几乎同时,中国古代对平衡和简单的运动形式就已具备相当水平的力学知识,所不同的是未建立起像阿基米德那样的理论系统。到明末清初,中国科学技术已显著落后于欧洲。
3、主要分支学科
在物理学的研究中,也有用“场”来描述物质的行为,称为场论。其描述方式和力学使用的方式有些不同,可分为经典场论及量子场论。不过在实务上,场论及力学要探讨的内容常常有密切的关系。例如作用在物体上的力常常是因为电磁场或重力场而产生,而当物体对其他物体产生作用力时,也常常会产生场。事实上,若以量子力学的观点,物体也是场,可以用波函数来描述。
1、经典力学(基础力学)
(1)质点及刚体力学
静力学
运动学
动力学
分析力学
拉格朗日力学
哈密顿力学
(2)连续介质力学
材料力学
固体力学
弹性力学
塑性力学
损伤力学
断裂力学
接触力学
土力学
(3)流体力学
流体静力学
流体动力学
2、应用力学
结构力学
工程力学
生物力学
地质力学
3、物理力学
4、天体力学
4、主要理论
1.物体运动三定律。
2.达朗贝尔原理
3.分析力学理论
4.连续介质力学理论
5.弹性固体力学基本理论
6.粘性流体力学基本理论
5、研究方法
力学
为了使这种关系反映事物的本质,力学家要善于抓住起主要作用的因素,撇弃或暂时撇弃一些次要因素。力学中把这种过程称为建立模型。质点、质点系、刚体、弹性固体、粘性流体、连续介质等是各种不同的模型。在模型的基础上可以运用已知的力学或物理学的规律,以及合适的数学工具,进行理论上的演绎工作,导出新的结论。依据所得理论建立的模型是否合理,有待于新的观测、工程实践或者科学实验等加以验证。在理论演绎中,为了使理论具有更高的概括性和更广泛的适用性,往往采用一些无量纲参数如雷诺数、马赫数、泊松比等。这些参数既反映物理本质,又是单纯的数字,不受尺寸、单位制、工程性质、实验装置类型的牵制。力学研究工作方式是多样的:有些只是纯数学的推理,甚至着眼于理论体系在逻辑上的完善化;有些着重数值方法和近似计算;有些着重实验技术等等。而更大量的则是着重在运用现有力学知识,解决工程技术中或探索自然界奥秘中提出的具体问题。现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。应用研究更需要对应用对象的工艺过程、材料性质、技术关键等有清楚的了解。在力学研究中既有细致的、独立的分工,又有综合的、全面的协作。
应用领域
力学是物理学、天文学和许多工程学的基础,机械、建筑、航天器和船舰等的合理设计都必须以经典力学为基本依据。机械运动是物质运动的最基本的形式。机械运动亦即力学运动。在力学理论的指导或支持下取得的工程技术成就不胜枚举。最突出的有:以人类登月、建立空间站、航天飞机等为代表的航天技术;以速度超过5倍声速的军用飞机、起飞重量超过300t、尺寸达大半个足球场的民航机为代表的航空技术;以单机功率达百万千瓦的汽轮机组为代表的机械工业,可以在大风浪下安全作业的单台价值超过10亿美元的海上采油平台;以排水量达5×10⁵t的超大型运输船和航速可达30多节、深潜达几百米的潜艇为代表的船舶工业;可以安全运行的原子能反应堆;在地震多发区建造高层建筑;正在陆上运输中起着越来越重要作用的高速列车,等等,甚至如两弹引爆的核心技术,也都是典型的力学问题。力学发展到今天已经构建成了宏伟的大厦,能够解决我们生存空间内的许多问题,但也有解释和解决不了的问题,需要继续探索,为其添砖加瓦,使其更完善。总之还有许多的问题。
6、重要著作
力学
7、著名人物
开普勒
古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。
伽利略·伽利雷
伽利略在实验研究和理论分析的基础上,最早阐明*落体运动的规律,间接证明了*落体运动是匀变速直线运动,提出加速度的概念。
艾萨克·牛顿
牛顿继承和发展前人的研究成果(特别是开普勒行星运动三定律),提出物体运动三定律。(牛顿第一定律、牛顿第二定律、牛顿第三定律)
阿尔伯特·爱因斯坦
《相对论》的创建人,对牛顿力学的诸多问题进行整改、修复和完善,开启了物理学的新纪元。
8、发展趋势
固体力学表示图
经典的连续介质力学将可能会被突破。新的力学模型和体系,将会概括某些对宏观力学行为起敏感作用的细观和微观因素,以及这些因素的演化,从而使复合材料(包括陶瓷、聚合物和金属)的强化、韧化和功能化立足于科学的认识之上。固体力学将融汇力-热-电-磁等效应。机械力与热、电、磁等效应的相互转化和控制,到21世纪大都还限于测量和控制元件上,但这些效应的结合孕育着极有前途的新机会。21世纪初出现的数百层叠合膜“摩天大厦”式的微电子元器件,已迫切要求对这类力-热-电耦合效应做深入的研究。以“Mechronics”为代表的微机械、微工艺、微控制等方面的发展,将会极大地推动对力-热-电-磁耦合效应的研究。
(2)流体力学
今后,航天飞机和新一代的超声速民航机的成功研制将首先取决于流体力学的进展。在有关的高温空气动力学中必须放弃原先的热力学平衡的假定。吸气式发动机中H₂,O₂在超声速流动状态下的混合、点火等,都是过去的理论和实践未能解决的难题。超声速流边界层的控制、减阻以及降噪控制等也带来一系列新问题。
(3)一般力学
一般力学21世纪以来已开始进入生物体运动问题的研究,研究了人和动物行走、奔跑及跳跃中的力学问题。这种在宏观范围内对生物体进行的研究,已经带来了一些新的结果。亿万年生物进化的结果,的确把优化的运动机能赋与了生存下来的物种。对其进一步研究,可以提供生物进化方向的理性认识,也可为人类进一步提高某些机构或机械的性能提供方向性的指导。以下几个方面的问题应当给予充分重视:(1)固体的非平衡/不可逆热力学理论;(2)塑性与强度的统计理论;(3)原子乃至电子层次上子系统(原子键,位错,空位等缺陷)的动力学理论。为深入进行这些研究,应当充分利用与开发计算机模拟(如分子动力学)和现代宏、细、微观实验与观测技术。工科离不开力学,在工科基础课中,开设了不同的力学课程:理论力学,假设物体不发生变形,用传统数学物理方法研究一切质点,物体的运动,静力学和动力学原理,机械原理的理论基础。材料力学,传统方法研究物体在各种载荷下,包括静力,静扭矩,静弯矩,振动,碰撞等,机械零部件和装配设计,机械加工的理论基础。流体力学,研究一切流体在容器、管道中运动规律和力学特性,液压、气动、热分析的理论基础。分析力学,使用计算数学方法分析力学有限元素法,把受力对象拆解成有限个元素,对每个元素进行受力分析,通过联立偏微分方程组,用泛函求解,计算出每个元素,每个节点的应力应变。联立方程组可化为刚度矩阵和*度组成的矩阵方程。
(4)生物力学
当今生物力学发展正经历着深刻的变化。生命科学与包括力学在内的基础和工程科学交叉、融合21世纪已愈来愈成为当今生命科学的研究热点,同时也是力学学科的新生长点。基础研究逐步精细化及定量化,大量数据的积累要求模型化及数学化,为生物力学研究开辟了新的用武之地。现代分子和细胞生物学既提出大量新课题,又带来了许多新工具,推动着生物力学由宏观向微(细)观深入、并强调宏-微(细)观相结合。实际应用的不断涌现,催生着以解决与应用相关的工程技术问题为目标的新的生物工程学。这一新的生物工程学远远超出了基于微生物的、以发酵工程为标志的生物技术及以医疗仪器研发为目标的生物医学仪器这两个传统的领域。不断寻求新的力学和物理原理与方法,与生命科学及其它基础和工程科学进一步融合,已成为当今生物力学发展的主要特色。当今生物力学正经历从“X×Bio=Bio-X”(交叉)到“Bio×X=X-Bio”(融合)的转变。在基础研究层面上,它将与生物物理学、生物数学、生物信息学、生物化学等紧密结合,重点研究生物学的定量化和精确化问题;在应用研究层面上,组织工程、药物设计与输运、血流动力学、骨-肌肉-关节力学等正在或已经得到临床或工业界的认同,其核心是解决关键技术问题。当前生物力学的发展特点可大致归纳为:内涵扩大(生物医学工程;生物工程),有机融合(生命科学与基础和工程科学),微观深入(细胞-亚细胞-分子层次;定量生物学),以及宏观-微观相结合(组织工程、器官力学;信息整合与系统生物学)。宏观生物力学研究仍为主流,但宏观-微观相结合、微观生物力学研究发展十分迅速。当前生物力学发展的前沿领域主要包括:1)细胞-分子力学;2)器官-组织力学;3)骨骼-肌肉-关节力学;4)生物力学新概念、新技术与新方法等。
(5)环境力学
环境力学是力学与环境科学相互结合而形成一门新兴交叉学科,主要研究自然环境中的变形、破坏、流动、迁移及其伴随的物理、化学、生物过程和导致的物质、动量、能量输运,定量化描述环境的演化规律和对人类生存环境的影响。环境力学的发展十分有利于深化人们对环境问题中的物理过程和基本规律的认识,促进环境问题的定量化研究。21世纪的环境力学研究,既要注重学科发展的自身规律和要求,又要紧密结合国家需求和工程实际,将机理研究、规律分析与防治措施有机地结合起来。结合中国的经济和社会发展需求,中国的环境力学研究必须抓住一个基础(复杂介质流动和多过程耦合)、两个经济发展地区(西部和沿海)、三个方面(水环境、大气环境、灾害与安全),确立重点发展领域,促进学科的发展。一方面,强调环境力学中的共性科学问题,包括:(1)环境流动与输运的基本方程和求解方法;(2)气、液、固界面的耦合;(3)多相、多组分、多过程,以及多尺度的耦合分析等;(4)“环境力学”中模型实验的尺度效应问题等。另一方面,瞄准西部开发和沿海经济开发,以及重大工程和影响的实际环境问题,包括:(1)西部干旱、半干旱环境治理的动力学过程—土壤侵蚀机理、沙尘暴形成和输送机理、以及荒漠化治理;(2)以水或气为载体的物质输运过程—污染物排放过程的精确预报、河口海岸泥沙、污染物输运及其对生态环境的影响规律;(3)重大环境灾害发生机理及预报—热带气旋、风暴潮、洪水预测、滑坡、泥石流产生机理、全球变暖等
(6)纳米力学
纳米力学(Nanomechanics)是研究纳米范围物理系统基本力学(弹性,热和动力过程)性质的纳米科学的一个分支。纳米力学为纳米技术提供了科学基础。纳米力学是经典力学,固态物理,统计力学,材料科学和量子化学等的交叉学科。
常把纳米力学当纳米技术的一个分支,即集中在工程纳米结构和纳米系统力学性质的应用面。纳米系统的例子,包括纳米颗粒,纳米粉,纳米线,纳米棍,纳米带,纳米管,包括碳纳米管和硼氮纳米管,单壳,纳米膜,纳米包附,纳米复合物/纳米结构材料(有纳米颗粒分散在内的液体),纳米摩托等。
纳米力学一些已确立的领域是:纳米材料,纳米摩檫学(纳米范畴的摩檫,摩损和接触力学),纳米机电系统,和纳米应用流体学(Nanofluidics)
9、中国大学
本一级学科中,全国具有“博士一级”授权的高校共38所,本次有28所参评;还有部分具有“博士二级”授权和硕士授权的高校参加了评估;参评高校共计39所。注:以下得分相同的高校按学校代码顺序排列。2012年教育部学科评估结果
排名
排名 |
学校代码及名称 |
得分 |
1 |
10001北京大学 |
90 |
10003清华大学 | ||
10213哈尔滨工业大学 | ||
4 |
10006北京航空航天大学 |
85 |
5 |
10141大连理工大学 |
83 |
6 |
10287南京航空航天大学 |
81 |
7 |
10698西安交通大学 |
80 |
10280上海大学 | ||
9 |
10007北京理工大学 |
78 |
10056天津大学 | ||
10358中国科学技术大学 | ||
12 |
10248上海交通大学 |
76 |
10335浙江大学 | ||
14 |
10699西北工业大学 |
74 |
10290中国矿业大学 | ||
10730兰州大学 | ||
17 |
10247同济大学 |
72 |
10288南京理工大学 | ||
10294河海大学 | ||
10487华中科技大学 | ||
21 |
10004北京交通大学 |
70 |
10610四川大学 | ||
10613西南交通大学 | ||
24 |
10217哈尔滨工程大学 |
69 |
10611重庆大学 | ||
26 |
10147辽宁工程技术大学 |
67 |
10246复旦大学 | ||
10299江苏大学 | ||
10459郑州大学 | ||
11414中国石油大学 | ||
11646宁波大学 | ||
32 |
10142沈阳工业大学 |
64 |
10143沈阳航空航天大学 | ||
10153沈阳建筑大学 | ||
10252上海理工大学 | ||
10618重庆交通大学 | ||
37 |
10150大连交通大学 |
62 |
10488武汉科技大学 | ||
10731兰州理工大学 |
10、国家重点学科
拥有力学国家一级重点学科的高校:
北京大学 |
清华大学,北京协和医学院-清华大学医学部 |
北京航空航天大学 |
大连理工大学 |
哈尔滨工业大学 |
上海交通大学 |
南京航空航天大学 |
中国科学技术大学 |
兰州大学 |
拥有力学国家二级重点学科的高校(不含已拥有力学国家一级重点学科的高校):
一般力学与力学基础 |
湘潭大学 |
固体力学 |
浙江大学,四川大学,西安交通大学,西北工业大学 |
弹性力学 |
上海大学 |
流体力学 |
天津大学,上海大学 |
工程力学 |
北京理工大学,同济大学,中国矿业大学,河海大学 |