欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是:首页  > 科普文章

稳定系统

科普小知识2022-09-12 22:13:08
...

当一个实际的系统处于一个平衡的状态时(就相当于小球在木块上放置的状态一样)如果受到外来作用的影响时(相当于上例中对小球施加的力),系统经过一个过渡过程仍然能够回到原来的平衡状态,我们称这个系统就是稳定的,否则称系统不稳定。一个控制系统要想能够实现所要求的控制功能就必须是稳定系统。

中文名:稳定系统

外文名:stablesystem(SS)

1、定义

稳定系统是指输入有界,输出必有界的系统。对线性时不变系统,当且仅当系统的单位脉冲响应h(n)绝对可和(或称绝对可加)时,系统稳定。

举例而言,如下图所示,一个钢球分别放在不同的两个木块上,A图放在木块的顶部,B图放在木块的底部。如果对图中的钢球施加一个力,使钢球离开原来的位置。A图的钢球就会向下滑落,不会在回到原来的位置。而B图中的钢球由于地球引力的作用,会在木块的底部做来回的滚动运动,当时间足够长时,小球最终还是要回到原来的位置。我们说A图所示的情况就是不稳定的,而B图的情况就是稳定的。

事实上,在实际的应用系统中,由于系统中存在储能元件,并且每个元件都存在惯性。这样当给定系统的输入时,输出量一般会在期望的输出量之间摆动。此时系统会从外界吸收能量。对于稳定的系统振荡是减幅的,而对于不稳定的系统,振荡是增幅的振荡。前者会平衡于一个状态,后者却会不断增大直到系统被损坏。

2、稳定性判定

对于系统稳定性的判定,控制学家们提出了很多系统稳定与否的判定定理。这些定理都是基于系统的数学模型,根据数学模型的形式,经过一定的计算就能够得出稳定与否的结论,其中,主要的判定方法有:劳斯判据、赫尔维茨判据、李亚谱若夫三个定理。这些稳定性的判别方法分别适合于不同的数学模型,前两者主要是通过判断系统的特征值是否小于零来判定系统是否稳定,后者主要是通过考察系统能量是否衰减来判定稳定性。

具体到使用方法及形式上,可分为下列三种具体的判定方法:

从闭环系统的零、极点来看,只要闭环系统的特征方程的根都分布在s平面的左半平面,系统就是稳定的。

判定多项式方程在S平面的右半平面是否存在根的充要判据。——特征方程具有正实部根的数目与劳斯表第一列中符号变化的次数相同。

利用开环频率的几何特性来判断闭环系统的稳定性和稳定性程度,更便于分析开环参数和结构变化对闭环系统瞬态性能影响。——利用幅角原理——Z、P分别为右半平面闭环、开环极点,要想闭环系统稳定,则Z=P+N=0,其中N为开环频率特性曲线GH(jw)顺时针绕(-1,j0)的圈数。

幅值裕度——系统开环频率特性相位为-180时(穿越频率),其幅值倒数K,意义为闭环稳定系统,如果系统的开环传递系数再增大K倍,系统临界稳定。

相位裕度——系统开环频率特性的幅值为1时(截止频率),其相位与180之和。意义为:闭环稳定系统,如果系统开环频率特性再滞后r,系统进入临界稳定。

低频段——稳态误差有关。L(w)在低频段常见频率为、,也就是一阶或二阶无差(v=1/v=2)

中频段——截止频率附近的频段,与系统的瞬态性能有关。为了具有合适的相位裕度(30~60),L(w)在中频段穿过0分贝线的斜率应为,并且具有足够的宽度。

高频段——抗高频干扰能力。高频段闭环频率特性近似于开环频率特性,高频段幅值分贝越小,则抑制高频信号衰落的作用越大,抗高频干扰越强。L(w)在高频段应具有较大的负斜率。

系统开环传递函数的某一参数变化造成闭环特征根在根平面上变化的轨迹。

增加开环零点,根轨迹左移,提高相对稳定性,改善动态性能。零点越靠近虚轴影响越大。

增加开环极点,根轨迹右移,不利于系统稳定和动态性能

3、总结

对于系统稳定的分析是对系统进行各类品质指标的分析的前提,与此同时,稳定是控制系统能够正常运行的首要条件。

当然,系统的稳定性只是对系统的一个基本要求,一个另人满意的控制系统必须还要满足许多别的指标,例如过渡时间、超调量、稳态误差、调节时间等。一个好的系统往往是这些方面的综合考虑的结果。

上一篇:机器语言

下一篇:负反馈