欢迎您访问科普小知识本站旨在为大家提供日常生活中常见的科普小知识,以及科普文章!
您现在的位置是:首页  > 科普文章

零向量

科普小知识2021-10-31 09:50:26
...

长度为零的向量是零向量,也即模等于零的向量,记作0。注意零向量的方向是无法确定的。但我们规定:零向量的方向与任一向量平行,与任意向量共线,与任意向量垂直。零向量的方向不确定,但模的大小确定。零向量与任意向量的数量积为0。

1、向量

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。

在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

2、定义

长度为零的向量是零向量,也即模等于零的向量,记作0。

3、性质

注意零向量的方向是无法确定的。但我们规定:零向量的方向与任一向量平行,与任意向量共线,与任意向量垂直。

零向量的方向不确定,但模的大小确定。但是注意向量与向量不能比较大小。例如,若向量a的模大于零,则向量a大于零向量的说法是错误的,因为实数之间可用比较大小,而向量之间不能比较大小。

零向量与任意向量的数量积为0。

4、运算规律

1.a+o=a

2.a-o=a

3.a·o=o·a=o(a为非向量)

4.a+(-a)=0

5、思考与探究

(1)零向量的方向不是任意的,而是无法确定的

我们知道既有大小,又有方向的量叫做向量,而零向量概念只规定其大小为0,并没有谈及方向问题,那么零向量的方向到底怎样呢?按照向量的概念,零向量也是有方向的。由于受到有些教辅书的误导,不少的老师和学生都认为“零向量的方向是任意的”,我想这种说法的根据可能就是“零向量与任意向量平行”的规定,但是,李文明认为这种说法是错误的,因为两个非零向量平行是指同向或反向的两个向量,“零向量与任意向量平行”的这种规定,并没有规定零向量方向如何。当规定中的任意向量是非零向量,我们也不能认为零向量的方向与这个非零向量的方向相同或相反;当规定中的任意向量是零向量,我们更是无法确定两个零向量的方向。由此可见,零向量的方向应该是“不确定的”,或者说是无法确定的,也就是说给我们一个零向量,没有人能够指出它的方向。换句话说零向量(起点与终点重合的向量)是退化的向量,它已经退化到只能确定其大小,而无法确定其方向的一类特殊向量。

(2)零向量与任意向量都是平行的

这是平行向量概念中的明确规定,也就是说零向量与任意向量都是共线的;这种规定使得任意两个平面向量的位置关系只有两种:共线或不共线,二者必居其一,也就是说平面向量可以分为两类:一类是共线向量,一类是不共线向量;不共线的两个向量一定是两个非零向量。

上一篇:方向导数

下一篇:球面三角学