多巴胺
多巴胺是一种神经传导物质,用来帮助细胞传送脉冲的化学物质。这种脑内分泌物和人的情欲、感觉有关,它传递兴奋及开心的信息。它正式的化学名称为4-(2-乙胺基)苯-1,2-二酚,简称“DA”。多巴胺是一种脑内分泌物,属于神经递质,用来帮助细胞传送脉冲,可影响一个人的情绪。这种脑内分泌物主要负责大脑的情欲、感觉,将兴奋及开心的信息传递,也与上瘾有关。阿尔维德·卡尔森确定多巴胺为脑内信息传递者的角色使他赢得了2000年诺贝尔医学奖。
1、化合物简介
基本信息
多巴胺化学
中文别名:2-(3,4-二羟基苯基)乙胺;雅多博明;3-羟酪胺;儿茶酚乙胺;诱托平;二羟基苯丙胺
英文名称:dopamine
英文别名:4-(2-Aminoethyl)benzene-1,2-diol;Dopamine;.α.-(3,4-Dihydroxyphenyl)-.β.-aminoethane;Dopaminum
CAS号:51-61-6
分子式:C8H11NO2
分子量:153.17800
精确质量:153.07900
PSA:66.48000
LogP:1.29930
物化性质
密度:1.247g/cm3
熔点:218-220ºC
沸点:337.7ºCat760mmHg
闪点:158ºC
储存条件:库房低温,通风,干燥
2、多巴胺特性
多巴胺是NA的前体物质,是下丘脑和脑垂体腺中的一种关键神经递质,中枢神经系统中多巴胺的浓度受精神因素的影响,神经末梢的GnRH和多巴胺间存在着轴突联系并相互作用,以及多巴胺有抑制GnRH分泌的作用。
中脑的神经原物质多巴胺(Dopamine),则直接影响人们的情绪。从理论上来看,增加这种物质,就能让人兴奋,但是它会令人上瘾。多巴胺在前脑和基底神经节(BasalGanglia)出现,基底神经节负责处理恐惧的情绪,但由于多巴胺的缘故,取代了恐惧的感觉,因此有很多人的上瘾行为,都是因多巴胺而起的。
你有否想过,人为甚么会思想,会有感觉,会对一些事物热烈追求,这可能都只不过来自我们大脑内一些微小物质的化学作用而已。
阿尔维德—卡尔森等三人就是研究这种人皆有之的物质而获得诺贝尔奖,他们研究的化学物质名叫「多巴胺」(dopamine),能影响每一个人对事物的欢愉感受。
人的脑中存在着数千亿个神经细胞,人所以能有七情六欲,控制四肢躯体灵活运动,都是由于脑部信息在它们之间传递无阻。然而,神经细胞与神经细胞之间存在间隙,就像两道山崖中的一道缝,讯息要跳过这道缝才能传递过去。
这些神经细胞上突出的小山崖名叫「突触」(synapse),当信息来到突触,它就会释放出能越过间隙的化学物质,把信息传递开去,这种化学物质名叫「神经递质」,多巴胺就是其中一种神经递质。
多巴胺的作用是把亢奋和欢愉的信息传递,人们对一些事物「上瘾」主要是由于它。诺贝尔委员会主席彼得松在评论今届奖项时就说:「烟民,酒鬼和瘾君子统统与多巴胺数量有关,受多巴胺控制。」
香烟中的尼古丁会令人上瘾,是由于尼古丁刺激神经元分泌多巴胺,使人感到快感。因此,近年的一些戒烟研究,都以针对多巴胺来进行。甚至有学者提出,爱情的产生,也源于多巴胺的分泌带来了亢奋。
男女第一次渴望对方的时候,性荷尔蒙会分泌出睾酮和雌激素,这种渴望持续下去,到了陷入爱情阶段,就会分泌多巴胺和血清胺,多巴胺是在爱情中最重要的物质,能让人一时处于疯狂的状态,会让你无法意识到对方的缺点,会挡住你的视线。到了下一阶段,男女会持续双方的关系,并希望得到更密切的结合,就会发展到sex或者是结婚,这时就会分泌催产素或者加压素。而这些激素大概就能维持两年时间,最多也就三四年。一般来说,如果男人和女人认识超过两年,内心就再也不分泌能感受爱情的荷尔蒙,爱情就会冷却。所以别太恨那个人,那个人只是忠心地按照自身的化学反应而采取行动而已。
人的生理状态和精神状态无时无刻不处于体内各种激素的调控之下,激素们演绎着复杂冗长的剧情,呈现出人生百态,多巴胺在其中扮演了重要的角色。多巴胺(Dopamine)是下丘脑和脑垂体中的一种关键神经递质,能直接影响人的情绪,同时中枢神经系统中的多巴胺浓度又受精神因素的影响。这种神奇的物质可以使人感觉兴奋,传递开心激动的信息,激发人对异性的情感。其实,我们的大脑中有一个爱情中心,就是下丘脑,下丘脑分泌的多种神经递质,比如多巴胺,肾上腺素,就像丘比特之箭,当一对男女一见钟情时,这些恋爱兴奋剂就会源源不断的分泌出来,于是我们有了爱的感觉,享受爱的幸福,甜蜜甚至眩晕,陷入其中无法自拔,所谓“当局者迷,旁观者清”,也是“多巴胺们”在发挥作用。
人们总是贪恋美好的感觉,多巴胺带来的兴奋的确可以使人上瘾,如同吸烟,酗酒带来的快感一样。吸烟,酗酒甚至吸毒,也都可以刺激多巴胺的分泌,令人飘飘欲仙,难以戒掉。品尝巧克力的甜蜜,体验爱情的幸福,瘾君子腾云驾雾的满足感,都是几乎同样的机制在发挥作用。那么为什么巧克力不像毒品一样让人无法自拔呢?我们的大脑可以分辨出它们的不同,告诉我们这是哪一种感觉,从而调整机体的状态。一些有趣的研究结果显示,购物带给人的愉悦心情也与多巴胺有着或多或少的联系。购物能够刺激大脑的主要区域,琳琅满目的商品和对购物收获的期待,都可以使多巴胺浓度上升,甚至超过了实际收获时的兴奋,于是即使是只逛不买,或者搜寻降价打折都会令人感觉很有乐趣。反而有可能当时买了一件觉得十分喜欢的衣服,拿回家却束之高阁,那是因为当购物完成之后,多巴胺的浓度会迅速下降,看到这件衣服的时候也不再有当时兴奋的感觉,所以很多女人的冲动购物,也许罪魁祸首正是捣乱的多巴胺。
瑞典科学家ArvidCarlsson确定多巴胺为脑内信息传递者的角色使他赢得了2000年诺贝尔医学奖。
爱情是多么美妙的事情,多巴胺带来的“激情”会给人一种错觉,以为爱可以永久*。不幸的是,我们的身体无法一直承受这种刺激,也就是说,一个人不可能永远处于心跳过速的巅峰状态。多巴胺的强烈分泌,会使人的大脑产生疲倦感,所以大脑只好让那些化学成分自然新陈代谢,这样的过程可能很快,也可能持续到三四年的时间。随着多巴胺的减少和消失,激情也由此不再,后果或者爱情归于平淡,或者干脆分道扬镳。如此说来,爱情的保质期只有三四年而已,所谓的“七年之痒”大概应该改为“四年之痒”吧。不过爱情本身就是激情而又短暂的,这不是杯具,并不是所有人都因为多巴胺的减少而选择分手。人之所以为人,是因为我们还有责任、亲情、誓言、承诺,坚守着爱情和婚姻的更多是这些因素,不是电光火石一样的激情。在生活的过程中,通过不断的经营,共同的进步,爱情还可以焕发出新的活力,这才是更广义的爱。借用一句严谨的表达,“当多巴胺风起云涌的时候,我们*地爱与被爱着,尽情享受爱的甜蜜;当多巴胺风平浪静的时候,我们坦然处之,仍然为爱奉献与努力,不离不弃。
3、多巴胺受体
科学家们通过试验发现,如果人缺少多巴胺的受体,就会抑制兴奋。如:一般身材较胖的人体内都缺少多巴胺受体,他们在接受食物所给的刺激时,往往要比正常人慢。因此,他们需要更多的食物来满足自己对食物的快感。
多巴胺受体的多少和人的遗传基因、生活方式、外界刺激都有一定关联。
4、药物说明
药理作用为多巴胺受体激动药。在体内为合成去甲肾上腺上腺上腺素及肾上腺素的前体物,存在于外周交感神经、神经节和中枢神经系统,为中枢神经递质之一,但因不易透过血-脑脊液屏障,主要表现为外周作用。具有兴奋肾上腺素α、β受体的作用,但对β2受体作用较弱;同时也作用于肾脏和肠系膜血管、冠状动脉的多巴胺受体,为较理想的抗休克药物,其末梢作用较复杂。小剂量静脉滴注(每分钟1~5μg/kg或每分钟200μg)时,主要兴奋多巴胺受体,使肾血管舒张,肾血流量、肾小球滤过率增加,肾功能改善,尿量及钠排泄量增加。等剂量静脉滴注(每分钟5~20μg/kg或每分钟0.3~1mg)时,可兴奋肾上腺素α、β受体及多巴胺受体,使心脏兴奋,心肌收缩力与心排血量增加,皮肤、黏膜血管收缩,而肾和肠系膜血管、冠状动脉扩张,血流量增加,但心率和血压变化不明显。大剂量(每分钟1.5~3μg)时兴奋α受体而致血管收缩、血压升高,其增高动脉压的作用优于异丙肾上腺上腺上腺素,增加心排血量方面优于去甲肾上腺素,增加尿量方面则优于异丙肾上腺素及去甲肾上腺素。皮下或肌内给药可发挥缩血管作用。
药代动力学
口服无效。静脉滴注时在肝、肾及血浆中单胺氧化化酶和儿茶酚氧位甲基转移酶迅速降解为无活性化合物,作用时间短暂。约25%剂量可在肾上腺素神经末梢代谢为去甲肾上腺上腺上腺素,但大部分转化为多巴胺相关性代谢物,经肾脏排泄。半衰期为1~2min。
适应症
用于各种类型休克,包括中毒性休克丶心源性休克、出血性休克、中枢性休克、特别对伴有肾功能不全、心排出量降低、周围血管阻力较低并且已补足血容量的病人更有意义。DARPP-32基因有三种变体:TTTCCC,这些变体决定大脑中多巴胺的水平。
禁忌症
嗜铬细胞嗜铬细胞瘤、环丙烷麻醉者、心动过速或心室颤动患者禁用,高血压、闭塞性血管病患者应慎用。
用法用量
成人常用量静脉注射,开始时每分钟按体重1-5ug/㎏,10分钟内以每分钟1-4ug/㎏速度递增,以达到最大疗效。慢性顽固性心力衰竭,静滴开始时,每分钟按体重0.5-2ug/㎏逐渐递增。多数病人按1-3ug/㎏/分给予即可生效。闭塞性血管病变患者,静滴开始时按1ug/㎏/分,逐增至5-10ug/㎏/分,直到20ug/㎏/分,以达到最满意效应。如危重病例,先按5ug/㎏/分滴注,然后以5-10ug/㎏/分递增至20-50ug/㎏/分,以达到满意效应。或该品20㎎加入5%葡萄糖注射液200-300ml中静滴,开始时按75-100ug/分滴入,以后根据血压情况,可加快速度和加大浓度,但最大剂量不超过每分钟500ug.。
不良反应
常见的有胸痛、呼吸困难、心悸、心律失常(尤其用大剂量)、全身软弱无力感;心跳缓慢、头痛、恶心呕吐者少见。长期应用大剂量或小剂量用于外周血管病患者,出现的反应有手足疼痛或手足发凉;外周血管长时期收缩,可能导致局部坏死或坏疽;过量时可出现血压升高,此时应停药,必要时给予α受体阻滞剂。
注意事项
⑴交叉过敏反应:对其他拟交感胺类药高度敏感的病人,可能对该品也异常敏感。
⑵对人体研究尚不充分,动物实验未见有致畸。给妊娠鼠有导致新生仔鼠存活率降低,而且存活者潜在形成白内障的报道。孕妇应用时必须权衡利弊。
⑶该品是否排入乳汁未定,但在乳母应用未发生问题。
⑷该品在小儿应用未有充分研究
⑸该品在老年人应用未有充分研究,但未见报告发生问题。
⑹在滴注该品时须进行血压、心排血量、心电图及尿量的监测。
下列情况应慎用:
①嗜铬细胞瘤患者不宜使用
②闭塞性血管病(或有既往史者),包括动脉栓塞、动脉粥样硬化、血栓闭塞性脉管炎、冻伤(如冻疮)、糖尿病性动脉内膜炎、雷诺氏病等慎用;
③对肢端循环不良的病人,须严密监测,注意坏死及坏疽的可能性;
④频繁的室性心律失常时应用该品也须谨慎。
给药说明
①应用多巴胺治疗前必须先纠正低血容量。
②在滴注前必须稀释,稀释液的浓度取决于剂量及个体需要的液量,若不需要扩容,可用0.8㎎/ml溶液,如有液体潴留,可用1.6-3.2㎎/ml溶液。中、小剂量对周围血管阻力无作用,用于处理低心排血量引起的低血压;较大剂量则用于提高周围血管阻力以纠正低血压。
③选用粗大的静脉作静注或静滴,以防药液外溢,及产生组织坏死;如确已发生液体外溢,可用5-10㎎酚妥拉明稀释溶液在注射部位作浸润。
④静滴时应控制每分钟滴速,滴注的速度和时间需根据血压、心率、尿量、外周血管灌流情况、异位搏动出现与否等而定,可能时应做心排血量测定。
⑤休克纠正时即减慢滴速。
⑥遇有血管过度收缩引起舒张压不成比例升高和脉压减小、尿量减少、心率增快或出现心律失常,滴速必须减慢或暂停滴注。
⑦如在滴注多巴胺时血压继续下降或经调整剂量仍持续低血压,应停用多巴胺,改用更强的血管收缩药。⑧突然停药可产生严重低血压,故停用时应逐渐递减。
药物相互作用
⑴与硝普钠、异丙肾上腺素、多巴酚丁胺合用,注意心排血量的改变,比单用该品时反应不同。
⑵大剂量多巴胺与α受体阻滞剂如酚苄明、酚妥拉明、妥拉唑林(Tolazoline)等同用,后者的扩血管效应可被该品的外周血管的收缩作用拮抗。
⑶与全麻药(尤其是环丙烷或卤代碳氢化合物)合用由于后者可使心肌对多巴胺异常敏感,引起室性心律失常。
⑷与β受体阻滞剂同用,可拮抗多巴胺对心脏的β1受体作用。
⑸与硝酸酯类同用,可减弱硝酸酯的抗心绞痛及多巴胺的升压效应。
⑹与利尿药同用,一方面由于该品作用于多巴胺受体扩张肾血管,使肾血流量增加,可增加利尿作用;另一方面该品自身还有直接的利尿作用。
⑺与胍乙啶同用时,可加强多巴胺的加压效应,使胍乙啶的降压作用减弱,导致高血压及心律失常。
⑻与三环类抗抑郁药同时应用,可能增加多巴胺的心血管作用,引起心律失常、心动过速、高血压。
⑼与单胺氧化酶抑制剂同用,可延长及加强多巴胺的效应;已知该品是通过单胺氧化酶代谢,在给多巴胺前2-3周曾接受单胺氧化酶抑制剂的病人,初量至少减到常用剂量的1/10。
⑽与苯妥英钠同时静注可产生低血压与心动过缓。在用多巴胺时,如必须用苯妥英纳抗惊厥治疗时,则须考虑两药交替使用。
⑾分离型脑起搏器通过电磁场激活频临变性脑细胞,保护正常脑细胞,恢复脑细胞的功能,促进脑内黑质纹状体释放多巴胺。
5、多巴胺的“回收”新机制
多巴胺是大脑中一种重要的神经递质,它参与生理和病理条件下人和哺乳动物的许多活动,尤其在运动调节、学习和记忆以及药物成瘾过程中起着关键作用。产生多巴胺这一神经递质的神经元(即多巴胺能神经元)对所释放的多巴胺采取了类似于“返回式卫星”的管理方式,即根据大脑活动需要释放多巴胺,同时又利用多巴胺转运体作为多巴胺的“回收泵”,将释放出去的多巴胺适时、适量地予以回收,这样既达到调节细胞外多巴胺浓度,适应生理活动需要的目的,又能使多巴胺得到重复再利用,节能增效。一旦多巴胺“回收泵”系统发生功能障碍,就会发生多种中枢神经系统疾病,例如药物成瘾等。那么,多巴胺的“回收泵”是如何被精确调控的呢?目前学术界对这一过程的了解仍然非常有限。
在中国科学院上海生命科学研究院神经科学研究所研究员周嘉伟的指导下,助理研究员朱树勇与博士研究生赵成江和吴莹莹等组成的团队经过多年的潜心研究,发现一种小G蛋白的调节因子Vav2能够通过调节多巴胺转运体在质膜的分布,从而显著改变多巴胺“回收泵”系统的转运效率。如果将Vav2基因敲除,“回收泵”功能异常提升,就会使大脑伏隔核多巴胺的含量明显升高。为了寻找控制多巴胺“回收泵”的“开关”,研究人员利用分子生物学实验手段筛选到胶质细胞源性神经营养因子GDNF的受体Ret。
他们的研究结果显示,GDNF和Ret可以作为拨动和调节多巴胺“回收泵”的“开关”而起作用。当这套“开关”失灵(如Ret基因敲除)的时候,动物呈现类似于Vav2基因敲除小鼠的表现。过去一般认为,GDNF及其受体Ret主要是掌管多巴胺能神经元的存活,因此,他们的这一发现拓展了人们对神经营养因子GDNF作用的传统认识。
值得一提的是,上述对多巴胺“回收泵”的调节机制具有脑区的特异性,这套“开关”主要在与奖赏和药物成瘾起始相关的脑区——伏隔核发挥作用。长期以来,人们对大脑中各主要多巴胺能系统之间在多巴胺“回收泵”的调节机理方面是否存在差别这一问题不甚了解,因此,周嘉伟研究组的这一成果揭示了大脑伏隔核与其它主要多巴胺能系统在分子水平上的显著差别,这将为理解和调控药物成瘾的形成过程提供重要的理论依据。确实,在该研究中他们发现Vav2基因缺失所导致的多巴胺“回收泵”机制失调可以有效抑制可卡因所致的药物成瘾的形成过程,表明作为一条全新的信号转导通路,GDNF/Ret/Vav2信号传导通路在可卡因成瘾的治疗中具有潜在的重要作用。